Цифровой вольтметр постоянного напряжения своими руками. Амперметр цифровой своими руками. Цифровые амперметры и вольтметры. Принципиальная схема вольтметра

При проектировании цифровых вольтметров или мультиметров большинство радиолюбителей операются либо на аналого-цифровые преобразователи серии К572ПВ, либо прибор строят по схеме частотомера с аналогоцифровым преобразователем "напряжение-частота" или "напряжение-период". Но есть другой способ - непосредственного измерения. Его сущность заключается в том, что счетчик прибора, работающий на индикацию, одновременно вырабатывает ступенчато-изменяющееся напряжение, которое поступает на один из входов компаратора, а на его другой вход поступает напряжение от измеряемой цепи.

В момент совпадения этих напряжений на выходе компаратора изменяется логический уровень, который, обычно останавливает счетчик в этом положении на некоторое время. Таким образом прибор работает как простой (медленный) частотомер, в течении некоторого времени происходит измерение напряжения (нарастание ступенчатого напряжения до уровня измеряемого), затем следует индикация, затем обнуление, и все сначала.

Используя микросхемы серии К176, а именно дешифраторы К176ИД2, имеющие на своих входах триггеры памяти можно построить вольтметр, показания которого будут столь же оперативно изменяться как и в приборах построенных на микросхемах К572ПВ2 или К572ПВ5.

Принципиальная схема трехразрядного вольтметра, измеряющего напряжение от нуля до 9,99В показана на рисунке 1. Основу прибора составляет трехразрядный счетчик на микросхемах D3-D5. На вход этого счетчика постоянно поступают импульсы частотой около 3 кГц от мультивибратора на элементах D1.1 и D1.2. Счетчик все время считает по кругу от нуля до 999, он не имеет никаких входов кроме информационного и не может устанавливаться в нуль какими-то внешними импульсами. На выходе счетчика кроме дешифраторов с семисегментными индикаторами включена резистивная матрица, состоящая из резисторов R5-R16.

Сопротивления резисторов соответствуют весовым значениям выходных кодов счетчика. Все резисторы имеют одну общую точку соединения. Именно в этой точке, во время работы счетчика получается ступенчато-нарастающее напряжение. Оно изменяется от нулевого уровня до уровня логической единицы с числом промежуточных ступеней 999. Затем резко падает до нуля, и снова постепенно нарастает до единицы.

Это напряжение поступает на прямой вход компаратора D2. Задача компаратора состоит в том, чтобы зарегистрировать момент совпадения этого напряжения с напряжением, поступающим с входного делителя (на самом деле не совпадения а минимального превышения, не более чем на одну ступень).

В этот момент на выходе компаратора устанавливается логическая единица. Она запускает одновибратор на элементах D1.3, D1.4, который вырабатывает короткий импульс. Этот импульс поступает на входы "X" дешифраторов D6-D8 и записывает в их триггеры тот код, который был в этот момент на выходах счетчика. Это число отображается индикатором до тех пор пока не поступит следующий импульс от одновибратора.

Таким образом счетчик все время ходит по кругу и синтезирует нарастающее напряжение, а на индикацию выводится только то значение, которое численно соответствует измеряемому напряжению.

Источник питания должен быть стабилизирован, поскольку он принимает непосредственное участие в формировании ступенчатого напряжения.

Номиналы резисторов R5-R16 рассчитаны и их сопротивления не соответствуют номинальному ряду, поэтому некоторые из них нужно набирать из двух-трех. Класс точности должен быть не менее 4%, от него в первую очередь зависит точность показаний прибора. Удобно взять обычные резисторы сопротивлением на 5-20% меньшего сопротивления чем на схеме, например, вместо R11 на 90 кОм берем на 82 кОм, а затем контролируя сопротивление точным омметром при помощи мелкой шкурки стачиваем резистивный слой с одной стороны корпуса резистора до получения нужного сопротивления.

Рисунок 2
Установив сопротивления указанные на схеме можно получить класс точности прибора 4-6%. Более высокую точность с серией К176 получить трудно. Если требуется более высокая точность напряжение на каждый резистор следует подавать через пару ключей микросхемы К561КТ3 (рисунок 2). В этом случае можно получить класс точности 0,1-0,5%, но это сильно усложняет схему.

Существенно повысить класс точности (1-2%) можно если счетчики К176ИЕ2 заменить на К561ИЕ14. К тому же нужно разделить цепи питания счетчиков с компаратором и светодиодных индикаторов, поскольку индикаторы потребляют большой ток и могут оказывать дестабилизирующее действие на формирователь ступенчатого напряжения. Калибруют прибор подбором номинала R3. Точно установить прибор на нуль можно включением резистора сопротивлением в несколько мегаом между выводом 4 и 11 компаратора.

Скорость работы прибора можно существенно увеличить если поднять частоту мультивибратора, например до 10-15 кГц, но в этом случае нужно соответствующим образом сократить длительность импульса, вырабатываемого одновибратором на элементах D1.3 и D1.4, таким образом, чтобы длительность вырабатываемого им импульса была меньше периода импульсов на выходе мультивибратора.

Верхний предел измерения можно установить подбором номинала R3, например, если нужно измерять 0..,99,9В его сопротивление должно быть около 1 Мом (окончательно подбирается при калибровке).

Лицевая сторона

Общее описание:

Это простой, но в тоже время довольно точный вольтметр. Схема работает на основе АЦП (аналого-цифровой преобразователь) IC CL7107, сделанный компанией Intersil. В схеме имеется 40-контактная микросхема, которая отвечает за преоброзованике аналогового сигнала в цифровой. Схема, как это описано здесь может отображать любое напряжение постоянного тока в диапазоне 0-1999 Вольт.

Технические характеристики:

  • Напряжение питания: + / - 5 В (симметричный)
  • Требования к питанию: 200 мА (максимум)
  • Диапазон измерения: + / - 0-1,999

Особенности:

  • Малый размер
  • Простота конструкции
  • Низкая стоимость
  • Простая настройка
  • Малое количество внешних компонентов

Как это работает?

Схема:

Дисплей MAN6960

Аналого-цифровой преобразователь, (ADC отныне) более известен как двойной преобразователь наклона или интегрирующего преобразователя. Этот тип преобразователя, как правило, предпочтительнее, чем другие типы, так как он обладает более высокой точностью и прост в дизайне. Работу схемы проще понять, если она описана в два этапа. На первом этапе и в течение заданного периода входное напряжение интегрируется и на выходе интегратора в конце этого периода есть напряжение, которое прямо пропорционально входному напряжению. В конце установленного периода интегратор подается с внутренним опорным напряжением и на выходе схемы постепенно уменьшается, пока не достигнет уровня опорного напряжения (нуль). Второй этап известен как отрицательный период наклона и его продолжительность зависит от выхода интегратора в первом периоде. Поскольку продолжительность первой операции является фиксированной и длина второго является переменной можно сравнить два и таким образом входное напряжение на самом деле по сравнению с внутренним опорным напряжением, и результат кодируется и посылается на дисплей.

Задняя сторона

Все это звучит довольно просто, но это на самом деле серия очень сложных операций, которые все сделанные АЦП IC с помощью нескольких внешних компонентов, которые используются для настройки схемы и её работы. Более подробно схема работает следующим образом. Напряжение измеряется через точки 1 и 2 цепи и цепи через R3, R4 и C4, наконец, применяется к контактам 30 и 31 ИС. Это вход IC, как вы можете видеть из ее диаграммы (В высоких и в низких соответственно). Резистор R1 вместе с С1 используются для установки частоты внутреннего генератора (часы), который установлен на частоте около 48 Гц. В этот тактовой частоте насчитывается около трех различных показаний в секунду. Конденсатор C2, который соединен между выводами 33 и 34, ИС была выбрана, чтобы компенсировать погрешности, вызванной внутренним опорным напряжением, а также держит дисплей устойчивым. Конденсатор C3 и резистор R5 вместе образуют цепь, которая делает интеграцию входного напряжения и в то же время предотвращает разделение входного напряжения, делает контур быстрее и надежнее, возможность ошибки значительно снижается. Конденсатор C5 вынуждает инструмент отображать нуль, когда нет напряжения на его входе. Резистор R2 вместе с P1 используются для настройки прибора при вводе в эксплуатацию. Резистор R6 контролирует ток, который протекает через дисплей. Три правых дисплея подключены, чтобы они могли показать все цифры от 0 до 9, а первый слева может отображать только номер 1, и когда напряжение отрицательно знак минус. Вся схема работает от симметричной? 5 В постоянного тока, которая применяется в контактах 1 (+5 В) , 21 (0 В) и 26 (-5 В) из IC.

Изготовление:

Прежде всего рассмотрим несколько основ в изготовлении электронной схемы на печатной плате. Плата выполнена из тонкого изолирующего материала, покрытого тонким слоем токопроводящей меди, которая формируется таким образом, чтобы сформировать необходимые проводники между различными компонентами схемы. Использование правильно спроектированной печатной платы очень необходимо, поскольку это ускоряет изготовление и существенно уменьшает возможность совершения ошибок. Медь должна быть луженая в процессе производства и покрыта специальным лаком, который защищает её окисления, а также чтобы делать пайки проще. Пайка компонентов к плате является единственным способом, чтобы построить вашу схему и от того, как вы это делаете зависит в значительной степени ваш успех или неудача. Эта работа не очень сложная, и если вы будете придерживаться нескольких правил, с которыми вы не должны иметь никаких проблем. Паяльник, который вы используете, должен быть легким и его мощность не должна превышать 25 Ватт. Есть много различных типов припоя на рынке и вы должны выбрать тот, который содержит необходимый флюс, чтобы обеспечить идеальную совместимость. Для того, чтобы спаять компонент правильно, вы должны сделать следующее: очистить компонент с помощью небольшого куска наждачной бумаги. Согните их на правильном расстоянии от компонента и вставьте компонент на своё место на борту.

Размещение:

PCB размеры: 77,6 мм х 44,18 мм или масштабировать его на уровне 35%

Возьмите горячий утюг и поместите его кончик на поводке компонентов, держа конец проволочного припоя в точке, где ведущий выходит. Когда припой начинает плавиться и течь, подождать, он охватит равномерно всю область вокруг отверстия и поток кипит и выходит из-под припоя. Вся операция не должна занимать более 5 секунд. Если все было сделано правильно поверхность шва должна иметь светлое металлическую отделку и ее края должны быть гладкие. Если припой в трещинах или имеет форму капли, то вы сделали сухой шов и вы должны удалить припой и переделывать. Постарайтесь, чтобы не перегреть дорожки, поскольку можно сместить их с доски и разбить их. Не используйте больше припои, так как вы работаете с риском короткого замыкания соседних дорожек на плате, особенно если они очень близко друг к другу. Когда вы закончите вашу работу, нужно отрезать избыток компонентов и очистите доску тщательно подходящим растворителем, чтобы удалить все остатки флюса, которые могут по-прежнему остаться на нем.

Рекомендуется начать работу по идентификации компонентов и разделения их на группы. Есть два момента, в изготовлении этого проекта, что вы должны соблюдать: перемычка используется для управления десятичной точки на дисплее. Если вы собираетесь использовать инструмент только для одного диапазона вы можете сделать перемычку соединение между самым правым отверстием на борту и соответствующим требуемой позиции для десятичной точки для конкретного приложения. Если вы планируете использовать вольтметр в различных диапазонах, вы должны использовать один полюс, трехпозиционный переключатель, сдвинуть десятичную точку в нужное место для диапазона измерения выбранного. (Этот переключатель может предпочтительно быть объединен с переключателем, который используется, чтобы фактически изменить чувствительность прибора). Помимо этого рассмотрения, и на то, что небольшой размер платы и большое количество стыков на нем что требует очень тонкого наконечника паяльника, строительство проекта очень простое. Вставить разъем IC и припаять его на месте, припаять флажки, резисторы, конденсаторы и многооборотный триммера Р1. Поверните доску и очень тщательно припаяйте дисплей ИС от медной стороны платы. Не забудьте проверить базу IC, как только одна строка будет покрыта за дисплеи и уже будет невозможно увидеть какую-либо ошибку, что вы возможно и сделали после того, как припаяли дисплеи на место. R3 контролирует диапазон измерения вольтметра и если вы предоставите для некоторых средств, для переключения различных резисторов на его месте вы можете использовать инструмент в диапазоне напряжений.

Замена резисторов:

  • 0 - 2 В ………… R3 = 0 Ом 1 %
  • 0 - 20 В ……….. R3 = 1,2 кОм 1 %
  • 0 - 200 В ………. R3 = 12 кОм 1 %
  • 0 - 2000 В ……… R3 = 120 кОм 1 %

Когда вы закончите всю пайку на доске и вы уверены, что все в порядке, вы можете вставить IC на свое место. ИК CMOS очень чувствительны к статическому электричеству. Это следует завернуть в алюминиевую фольгу, чтобы защитить его от статических разрядов и с ним следует обращаться с большой осторожностью, чтобы не повредить его. Старайтесь избегать касаясь его флажков руками. Подключите схему к подходящему источнику питания? 5 В постоянного тока и включите питание. Дисплеи должен загореться немедленно и должнен сформировать ряд. Короткое замыкание входной (0 В) и отрегулируйте триммер P1 пока на дисплее не будет « 0 ».

Компонеты:

  • R1 180k
  • R2 22k
  • R3 12k
  • R4 1M
  • R5 470k
  • R6 560 Ом
  • С1 100 пФ
  • C2, C6, C7 100нФ
  • С3 47nF
  • С4 10нФ
  • С5 220nF
  • P1 20k триммер многооборотный
  • U1 ICL 7107
  • LD1, 2,3,4 MAN 6960 общий анод LED дисплей
Если он не работает:

Проверьте остатки пайки, из-за низ могут вонзникнуть проблемы. Проверьте еще раз все внешние подключения к схеме, чтобы увидеть есть ли ошибка. Смотрите, что нет ли никаких недостающих компонетов или вставленных в неправильных местах. Убедитесь, что все поляризованные компоненты были припаяны правильно. Убедитесь, что питания имеет правильное напряжение и связано правильно, вокруг вашей схемы. Проверьте исправны ли, или может повреждены ваши компоненты.

Источник питания:

Вольтметр автомобильный — это полезное устройство, позволяющее автомобилисту всегда знать о том, какое напряжение в бортовой сети его транспортного средства. Многих автолюбителей сегодня интересует вопрос, как соорудить такой девайс самостоятельно в домашних условиях. Ниже вы сможете найти пошаговую инструкцию по изготовлению прибора своими руками.

[ Скрыть ]

Характеристика автомобильного вольтметра

Как сделать вольтметр? Как правильно должен подключаться сделанный электронный вольтметр в прикуриватель, какая схема подключения? Для начала давайте ознакомимся с основными характеристиками устройства.

Описание устройства

Как мы уже сказали, цифровой вольтметр предназначен для измерения напряжения. Аналоговое устройство представляет собой девайс, оснащенный стрелочным указателем, а также шкалой. На сегодняшний день такие устройства используются очень редко, в последнее время все большую популярность набирают цифровые девайсы.

Виды

Что касается непосредственно видов, то в продаже можно найти либо простые устройства, либо комбинированные.

  1. Простой. Такой девайс характеризуется сравнительно небольшими размерами, в результате чего его монтаж допускается фактически в любом место транспортного средства. Поэтому обычно подключение вольтметра такого типа производится в прикуриватель. Таким образом, девайс позволяет производить мониторинг состояния уровня напряжения аккумуляторной батарее как при заглушенном, так и при заведенном двигателе. Если вы решили установить вольтметр своими руками, то вам будет полезно знать, что при заглушенном моторе напряжение должно составлять 12.5 вольт, в то время как на заведенном — 13.5-14.5 вольт.
    В том случае, если данный параметр будет более высоким или низким, потребуется произвести диагностику бортовой сети машины. Вольтметр в авто будет незаменимым, будь то стрелочный вариант или цифровой автомобильный, станет незаменимым атрибутом для тех, кто любит отдыхать на природе. С его помощью вы всегда будете знать, какое напряжение в сети вашего транспортного средства и как не допустить его снижения ниже нормы. Ни для кого не секрет, что ориентироваться на штатные сигнализаторы о разряде АКБ — это не совсем правильно, поскольку такие устройства обычно предупреждают водителя тогда, когда предпринимать какие-то действия уже поздно. Схема вольтметра может быть подключена к специальному выносному дисплею, который можно установить в любом месте автомобиле, например, прямо в центральную консоль.
  2. Комбинированный. Что касается комбинированных приборов, то они могут быть дополнительно оснащены термометрами, тахометрами, амперметрами и т.д. Благодаря термометру водитель всегда сможет знать, какая температура в салоне авто или на улице, в моторном отсеке транспортного средства. С помощью тахометра у автолюбителя всегда будет возможность мониторинга количества оборотов мотора. Как правило, если вы покупаете комбинированный гаджет с тахометром, в комплекте должны идти все необходимые датчики, которые позволяют производить замер данного показателя от 50 градусов мороза до 120 градусов тепла. В целом процедура монтажа прибора такого типа в свою автомобиль — не особо сложная процедура, с которой вполне можно справиться своими силами.

Руководство по изготовлению самодельного вольтметра в авто

Схема


Итак, если вы решили соорудить вольтметр автомобильный из калькулятора, светодиодный из ламп или любой другой, вы должны как минимум разбираться в этой теме. Ламповый вольтметр или вольтметр на светодиодах можно приобрести в любом тематическом магазине автоэлектроники. Но если вы решили все сделать своими руками, то учтите, что просто взять плату и установить ее в авто — не выход, нужна определенные познания в области электроники. Мы рассмотрим пример схемы цифрового девайса в автомобиле, в частности, вольтметр на pic16f676. Ниже приведена схема устройства с пределом измерения 50 вольт, этого вполне достаточно.

На двух резисторах — R1 и R2 — обустроен делитель напряжения, а элемент R3 предназначен для калибровки девайса. Еще один компонент С1 (конденсатор) используется для защиты системы от сигнальных помех, также он позволяет сглаживать входной импульс. VD1 — это стабилитрон, предназначенный для ограничения уровня входного напряжения на входе контроллера, его использование необходимо для того, чтобы вход МК не сгорел, когда напряжение в сети увеличится.

Инвертирующий компонент девайса собран на резисторах R11-R13, а также транзисторе VT1. Инвертор зажигает точку непосредственно на самом индикаторе вместе со вторым разрядом. К МК подключается индикатор с анодом, характеризующийся минимальным потреблением тока. Что касается непосредственно настройки девайса, то она осуществляется при помощи подстроечного резистора R3 (автор видео о том, как своими руками соорудить вольтметр — Руслан К).

Подключение своими руками

Чтобы подключить вольтметр на микроконтроллере в свой автомобиль самостоятельно, для начала следует определиться с местом монтажа. Установка осуществляется в любом удобное для водителя место. В нашем случае мы установим вольтметр в машину в центральную консоль.

Процесс описан на примере автомобиля ВАЗ 2113:

  1. Произведите демонтаж пластиковой накладки справа от панели приборов, над магнитолой. В случае с ВАЗ 2113 эта пластмасса снимается без проблем, крепится она на пластиковых фиксаторах, поэтому при демонтаже будьте осторожны, чтобы не повредить их.
  2. Используя электрический лобзик, вам необходимо прорезать прямоугольное отверстие на заглушке. Вырезайте отверстие в соответствии с размерами дисплея вашего вольтметра — устройство должно идеально подходить для прорезанного отверстия.
  3. С обратной стороны пластиковой заглушки произведите установку девайса. Для начала его можно зафиксировать при помощи обычных канцелярских резинок. Разумеется, ездить так вы не будете, ведь это совсем не эстетично и только испортит вид в салоне авто. Поэтому свободное пространство с обратной стороны необходимо будет залить специальным сантехническим герметиком, чтобы плата хорошо держалась на заглушке. Когда вольтметр схватится, резинки можно убрать.
  4. Чтобы подключить устройство к бортовой сети, можно использовать специальный разъем от блока питания компьютера. Он может подойти, а может и не подойти — если не подошел, придется прибегнуть к пайке. Установите обратно пластмассовую заглушку вокруг дисплея можно дополнительно установить рамку, чтобы улучшить внешний вид экрана. Важно, чтобы вольтметр не отвлекал водителя во время езды, поэтому если свет цифр слишком яркий, с этим необходимо что-то сделать. Можно затемнить экран с помощью обычного лака либо небольшого кусочка тонировочной пленки.
  5. Подключить устройство можно либо напрямую к аккумулятору, чтобы вольтметр функционировал всегда, либо к зажиганию. Второй вариант более приемлемый, в этом случае девайс будет активироваться при включении автомагнитолы, то есть вы всегда сможете следить за состоянием напряжения при включенной аудиосистеме.

Видео «Установка цифрового вольтметра своими руками»

Подробнее о том, как осуществляется монтаж цифрового вольтметра своими силами, вы можете узнать из видео ниже (автор видео — Авто мир).

Цифровой ВОЛЬТМЕТР и АМПЕРМЕТР для лабораторного блока питания (однополярного и двухполярного) на специализированной микросхеме ICL7107

Сложилось так, что возникла необходимость в изготовлении амперметра и вольтметра для лабораторных блоков питания. Чтобы решить проблему решил порыться в Интернете и найти легко повторяемую схему с оптимальным соотношением цена-качество. Были мысли с нуля изготовить амперметр и вольтметр на базе ЖКИ и микроконтроллера (МК). А сам себе думаю, если это будет микроконтроллер, то не каждый сможет повторить конструкцию - ведь необходим программатор, а покупать или делать программатор для программирования один-два раза даже мне не сильно хочется. Да и людям, наверное, тоже не захочется. Кроме того, все микроконтроллеры (с которыми я имел дело) измеряют входной сигнал положительной полярности относительно общего провода. Если нужно мерять отрицательные значения, то придётся иметь дело с дополнительными операционными усилителями. Как-то напрягло всё это! Глаз упал на широко распространенную и доступную микросхему ICL7107. Её стоимость оказалась в два раза меньше стоимости МК. Стоимость ЖКИ 2х8 символов оказалась в три раза больше стоимости необходимого количества семисегментных светодиодных индикаторов. Да и свечение светодиодных индикаторов мне нравится больше чем ЖКИ. Можно использовать и аналогичную ещё более дешевую м/сх отечественного производства КР572ПВ2. Нашёл в Интернете схемы и вперёд проверять работоспособность! Ошибка в схеме была, но исправил. Оказалось, что при проведении калибровки показаний АЦП м/сх довольно точно работает и точность показаний вполне удовлетворит даже самого придирчивого пользователя. Главное подстроечный резистор взять многооборотный хорошего качества. Счёт очень быстрый - без тормозов. Есть существенный недостаток - двухполярное питание ±5В, но этот вопрос легко решаем при помощи отдельного сетевого блока питания на маломощном трансформаторе с положительным и отрицательным стабилизаторами (схему приведу позже). Для получения -5В можно применить специализированную микросхему ICL7660 (видна на фото вверху страницы) - классная штука! Но у неё адекватная цена только в SMD корпусе, а в обычном DIP мне показалась дороговатой, да и купить её гораздо сложнее нежели обычные линейные стабилизаторы - проще минусовой стабилизатор сделать. Оказалось, что ICL7107 прекрасно измеряет и положительные и отрицательные напряжения относительно общего провода, да ещё и знак минус при этом высвечивается в первом разряде. Вообще то в первом разряде используется только знак "минус" и цифра "1" для индикации полярности и значения сотни Вольт. Если для лабораторного блока питания индикация напряжения 100В не нужна и полярность напряжения индицировать не нужно, поскольку на лицевой панели БП и так всё должно быть написано, то первый индикатор можно вообще не устанавливать. Для амперметра ситуация таже, но только "1" в первом разряде будет указывать на достижение тока в десять Ампер. Если БП на ток 2...5А, то первый индикатор можно не ставить и сэкономить. Короче говоря, это только мои личные рассуждения. Схемы очень простые и начинают работать сразу. Нужно только по контрольному вольтметру выставить правильные показания при помощи подстроечного резистора. Для калибровки амперметра придётся подключить к БП нагрузку и по контрольному амперметру выставить правильные показания на индикаторах и всё! Для питания амперметров в схеме двухполярных блоков питания оказалось, что лучше всего использовать отдельный небольшой сетевой трансформатор и стабилизаторы с общим проводом изолированным от общего провода самого блока питания. При этом входа амперметров можно подключать к измерительным шунтам "как попало" - м/сх будет измерять как "положительные", так и "отрицательные" падения напряжения на измерительных шунтах установленных в любом участке схемы БП. Особенно это важно тогда, когда оба стабилизатора в двухполярном блоке питания уже объединены по общему проводу без измерительных шунтов. Почему я хочу сделать отдельный такой себе маломощный блок питания для измерителей? Ну ещё потому, что если питать измерители от трансформатора самого блока питания, то при получении напряжения 5 В из 35 В нужно будет устанавливать дополнительный радиатор который будет тоже выделять много тепла, поэтому пускай лучше небольшие герметичные трансформаторы на небольшой платке. А в случае БП на напряжение больше чем 35 В, скажем 50 В, придётся дополнительные меры принимать, чтобы обеспечить для пяти Вольтовых стабилизаторов на входе напряжение не более 35 В. Можно применить высоковольтные импульсные стабилизаторы с низким тепловыделением, но при этом возрастает стоимость. Короче говоря, как не одно, так другое;-)

Схема вольтметра:


Схема амперметра:


Фотовид печатной платы вольтметра и амперметра (размер платы 122х41 мм) со светодиодными семисегментными индикаторами типа E10561 с цифрами высотой 14,2 мм. Питание вольтметра и амперметра раздельное! Это необходимо для обеспечения возможности измерения токов в двухполярном источнике питания. Шунт амперметра устанавливается отдельно - цементный резистор 0,1 Ом/5 Вт.

Схема самого простого сетевого блока питания для совместного и раздельного питания вольтметров и каждого из амперметров (может быть идея ерундовая, но рабочая):

И фотовид печатных плат с применением компактных герметичных трансформаторов 1,2...2 Вт (размер платы 85х68 мм):


Схема преобразователя полярности напряжения (как вариант получения -5 В из +5 В):


Видео работы вольтметра

Видео работы амперметра

Наборы и платы делать не буду, но если кого-нибудь заинтересовала данная конструкция, то чертежи печатных плат можете скачать .

Всем спасибо за уделённое внимание! Удачи, мира и добра Вашему дому! 73!

Здравствуй дорогой читатель. Иногда возникает необходимость иметь «под рукой» небольшой простенький вольтметр. Сделать такой вольтметр своими руками не составит большого труда.

О пригодности вольтметра для измерения напряжений в тех или иных цепях судят по его входному сопротивлению, которое складывается из сопротивления рамки стрелочного прибора и сопротивления добавочного резистора. Так как на разных пределах добавочные резисторы имеют разные номиналы, то и входное сопротивление прибора будет другим. Чаще вольтметр оценивают его относительным входным сопротивлением, характеризующим отношение входного сопротивления прибора к 1В измеряемого напряжения, например 5кОм/В. Это удобнее: входное сопротивление вольтметра на разных пределах измерений разное, а относительное входное сопротивление постоянное. Чем меньше ток полного отклонения стрелки измерительного прибора Iи, используемого в вольтметре, тем больше будет его относительное входное сопротивление, тем точнее будут производимые им измерения. В транзисторных конструкциях приходится измерять напряжение от долей вольта до нескольких десятков вольт, а в ламповых еще больше. Поэтому однопредельный вольтметр неудобен. Например, вольтметром со шкалой на 100В нельзя точно измерить даже напряжения 1- 5В, так как отклонение стрелки получится малозаметным. Поэтому нужен вольтметр, имеющий хотя бы три — четыре предела измерений. Схема такого вольтметра постоянного тока показана на рис.1. Наличие четырех добавочных резисторов R1, R2, R3 и R4 свидетельствует о том, что вольтметр имеет четыре предела измерений. В данном случае первый предел 0-1В, второй 0-10В, третий 0-100В и четвертый 0-1000В.
Сопротивления добавочных резисторов можно рассчитать по формуле, вытекающей из закона Ома: Rд= Uп/Iи — Rп, здесь Uп — наибольшее напряжение данного предела измерений, Iи – ток полного отклонения стрелки измерительной головки, а Rп – сопротивление рамки измерительной головки. Так, например, для прибора на ток Iи = 500мкА (0,0005А) и рамкой сопротивлением 500 Ом сопротивление добавочного резистора R1, для предела 0-1В должно быть 1,5кОм, для предела 0-10В — 19,5кОм, для предела 0-100В — 199,5кОм, для предела 0-1000 – 1999,5кОм. Относительное входное сопротивление такого вольтметра будет 2кОм/В. Обычно, в вольтметр монтируют добавочные резисторы с номиналами, близкими с расчетными. Окончательно же «подгонку» их сопротивлений производят при градуировке вольтметра путем подключения к ним параллельно или последовательно других резисторов.

Если вольтметр постоянного тока дополнить выпрямителем, преобразующим переменное напряжение в постоянное (точнее — пульсирующее), получим вольтметр переменного тока. Возможная схема такого прибора с однополупериодным выпрямителем показана на рис.2. Работает прибор следующим образом. В те моменты времени, когда на левом (по схеме) зажиме прибора положительная полуволна переменного напряжения, ток идет через диод Д1 и далее через микроамперметр к правому зажиму. В это время диод Д2 закрыт. Во время положительной полуволны на правом зажиме, диод Д1 закрывается, и положительные полуволны переменного напряжения замыкаются через диод Д2, минуя микроамперметр.
Добавочный резистор Rд рассчитывают так же, как и для постоянных напряжений, но полученный результат делят на 2,5-3, если выпрямитель прибора однополупериодный, или на 1,25-1,5, если выпрямитель прибора двухполупериодный — рис.3. Более точно сопротивление этого резистора подбирают опытным путем во время градуировки шкалы прибора. Можно рассчитать Rд и по другим формулам. Сопротивление добавочных резисторов вольтметров выпрямительной системы, выполненных по схеме на рис.2, вычисляют по формуле:
Rд = 0,45*Uп/Iи – (Rп + rд);
Для схемы на рис.3 формула имеет вид:
Rд = 0,9*Uп/Iи – (Rп + 2rд); где rд – сопротивление диода в прямом направлении.
Показания приборов выпрямительной системы пропорциональны средне выпрямленному значению измеряемых напряжений. Шкалы же их градуируют в среднеквадратических значения синусоидального напряжения, поэтому показания приборов выпрямительной системы равны среднеквадратичному значению напряжения лишь при измерении напряжений синусоидальной формы. В качестве выпрямительных диодов используются германиевые диоды Д9Д. Такими вольтметрами можно измерять и напряжение звуковой частоты до нескольких десятков килогерц. Шкалу для самодельного вольтметра можно начертить с помощью программы FrontDesigner_3.0_setup.

Просмотров