Лопатка ротора и турбина высокого давления турбомашины. Ротор турбины высокого давления Лопатки турбины высокого давления

Ротор ТВД состоит из рабочего колеса (диска с рабочими лопатками), лабиринтного диска, вала ТВД.

Рабочая лопатка ТВД ‑ охлаждаемая, состоит из хвостовика, ножки, пера и бандажной полки с гребешками. Воздух на охлаждение подводится к хвостовику, проходит по радиальным каналам в теле пера лопатки и выходит через отверстия в передней и задней части пера лопатки в проточную часть. В каждом пазу диска устанавливается по две лопатки. Соединяются лопатки с диском замками «елочного» типа. Лабиринтный диск и диск ТВД охлаждается воздухом из-за КВД.

Турбина низкого давления состоит из ротора и корпуса опор турбин с сопловым аппаратом ТНД. Ротор ТНД состоит из рабочего колеса (диска с рабочими лопатками) и вала ТНД, соединённых между собой болтами. Рабочие лопатки ротора ТНД неохлаждаемые, соединяются с диском замками «елочного» типа. Диск охлаждается воздухом, отбираемым из КВД.

В корпусе опор турбин наружная и внутренняя оболочки соединены между собой стойками, проходящими внутри полых лопаток соплового аппарата второй ступени турбины. Через лопатки проходят также трубопроводы масляных и воздушных коммуникаций. В корпусе опор турбин имеются узлы задних подшипников опор роторов низкого и высокого давления.

Сопловые лопатки, отлитые в виде секторов по три лопатки в секторе, охлаждаются воздухом, отбираемым из-за четвертой ступени КВД.

Турбина вентилятора состоит из ротора и статора. Статор турбины вентилятора состоит из корпуса и пяти сопловых аппаратов, набранных из отдельных литых секторов, по пять лопаток в секторе. Ротор турбины вентилятора дисково-барабанной конструкции. Диски соединяются между собой и с валом турбины вентилятора болтами. Лопатки, как сопловые, так и рабочие, неохлаждаемые; диски турбины вентилятора охлаждаются воздухом, отбираемым из КВД. Рабочие лопатки всех ступеней ротора ТВ бандажированы, соединены с дисками замками «елочного типа».

Выходное устройство турбины состоит из корпуса задней опоры, реактивного сопла внутреннего контура и стекателя.

На корпусе задней опоры турбины имеются места крепления узлов заднего пояса подвески двигателя к самолету. Задний узел подвески двигателя установлен на силовом кольце, которое является частью внешней оболочки корпуса задней опоры. Внутри корпуса расположен подшипниковый узел ротора вентилятора.

В стойках, соединяющих внутреннюю и наружную оболочки корпуса, расположены коммуникации задней опоры ротора вентилятора.

Режим работы зон ТО и ТР
Режим работы этих зон характеризуется числом рабочих дней в году, продолжительностью и количеством смен, временем начала и конца смен, распределением производственной программы во времени и должен быть согласован с графиком выпуска и возврата автомобилей с линии. Работы по ЕО и ТО-1 выполняются в межсменное время. Межсменное время – это...

Расчет количества постов ТР
Ммзп=Пучо / Фрм∙ Рср∙ n ∙ ŋ ,(13) где Пучо- производственная программа по операциям ТР выполняемым на участке стационарной мастерской, чел.-ч.; Фрм- фонд времени рабочего места; Рср- среднее число рабочих, приходящихся на 1 пост, чел; Рср=2 чел; n- число рабочих смен в сутки; n=1; ŋ=0,85-коэффициент использова...

Определение программы участка
Программой участка называется установленный или рассчитанный объем работы. Объем работы участков ремонтного депо зависит от количества вагонов поступающих в деповской ремонт. Так программа ВСУ соответствует запланированной программе конкретного депо. , Программа тележечного участка учитывает, что на данный участок поступает все тележки с...

1. Угол установки профиля.

g уст = 68,7 + 9,33×10 -4 (b 1 - b 2) - 6,052 ×10 -3 (b 1 - b 2) 2

g уст кор. = 57,03°

g уст. ср. = 67,09°

g уст. пер. = 60,52°

2. Величина хорды профиля.

b Л.ср = S Л.ср / sin g уст.ср = 0,0381 / sin 67,09° = 0,0414 м;

b Л.корн = S Л.корн / sin g уст.корн = 0,0438 / sin 57,03° = 0,0522 м;

b Л.пер = S Л.пер / sin g уст.пер = 0,0347 / sin 60,52° = 0,0397 м;

S Л.корн =К S . корн ∙S Л.ср =1,15∙0,0381=0,0438 м 2 ;

S Л.пер =К S . пер ∙S Л.ср =0,91∙0,0381=0,0347 м 2 ;

3. Шаг охлаждаемой рабочей решетки.

= К т ∙

где , К Л = 0,6 – для рабочих лопаток

с учётом охлаждения

= К т ∙ =1,13∙0,541=0,611

где К т = 1,1…1,15

t Л.ср = b Л.ср ∙ =0,0414∙0,611=0,0253 м

Полученное значение t Л.ср следует уточнить, чтобы получить целое число лопаток в рабочей решетке, необходимое для прочностных расчетов элементов ТВД

5. Относительный радиус скругления выходной кромки лопаток выбирается в долях от шага решетки 2 = R 2 / t (величина 2ср в среднем сечении представлена в табл. 3). В корневых сечениях величина 2 увеличивается на 15…20%, в периферийных сечениях уменьшается на 10…15%.

Таблица 3

В нашем примере выбираем: 2ср = 0,07; 2корн = 0,084; 2пер = 0,06. Тогда радиусы скругления выходных кромок можно определить R 2 = 2 ∙t для расчетных сечений: R 2ср = 0,07 ∙ 0,0252 = 1,76 ∙ 10 -3 м; R 2корн = 0,084 ∙ 0,02323 = 1,95 ∙ 10 -3 м; R 2л.пер = 0,06 ∙ 0,02721 = 1,63 ∙ 10 -3 м.

6. Угол заострения выходной кромки охлаждаемых сопловых лопаток g 2с = 6…8°; рабочих – g 2л = 8…12°. Эти цифры в среднем в 1,5…2 раза больше, чем в неохлаждаемых лопатках. В нашем случае при профилировании рабочих лопаток назначаем g 2л = 10º во всех расчетных сечениях.

7). Конструктивный угол на выходе из сопловых лопаток a 1л = a 1см; на выходе из рабочих лопаток b 2л = b 2см + ∆b к, где среднего сечения Db к = 0;

для корневого Db к = + (1…1,5)°; для периферийного Db к = – (1...1,5)°, а a 1см, b 2см берутся из табл. 2. В нашем примере принимаем для рабочей решетки: Db к = 1,5º ; b 2л.ср = 32º18′ ; b 2л.кор = 36º5′; b 2л.пер = 28º00′ .

8). Угол отгиба выходного участка спинки профиля на среднем диаметре (затылочный угол) g зат = 6…20°: при М 2 £ 0,8 g зат = 14…20°; при М 2 » 1, g зат = 10…14°; при М W £ 1,35, g зат = 6…8°, где . В корневых сечениях g зат берется меньше указанных величин на 1…3°, в периферийных сечениях может достигать 30°.

В нашем примере для рабочей решетки в среднем сечении

,

поэтому выбираем g зат.л.ср = 18º; g зат.л.корн = 15º; g зат.л.пер = 28º.

Турбина двигателя? осевая, реактивная, пятиступенчатая, преобразует энергию газового потока в механическую энергию вращения компрессоров и вентилятора двигателя, приводов агрегатов и нагнетателя. Турбина расположена непосредственно за камерой сгорания. К турбине присоединяется реактивное сопло, служащее для создания тяги двигателя за счет реактивной струи.

Турбина состоит из одноступенчатой турбины высокого давления (ТВД), одноступенчатой турбины низкого давления (ТНД) и трехступенчатой турбины вентилятора (ТВ), каждая из которых включает статор, ротор и опору.

Опорами роторов ТВД, ТНД и ТВ, являющимися задними опорами роторов ВД, НД и В, служат роликоподшипники.

Все подшипники охлаждаются и смазываются маслом под давлением. Для предотвращения нагрева подшипников горячими газами их масляные полости изолированы радиально-торцовыми контактными уплотнениями.

Все опоры роторов турбин имеют устройства для гашения колебаний роторов, возникающих при работе двигателя? масляные демпферы опор роторов.

Роторы турбин связаны газодинамической связью.

Турбина высокого давления (ТВД)

Турбина высокого давления (ТВД) ? осевая, реактивная, одноступенчатая, предназначена для преобразования части энергии газового потока, поступающего из КС, в механическую энергию, используемую для вращения ротора КВД и всех приводных агрегатов двигателя.

ТВД включает статор и ротор.

СА набирается из десяти отдельных секторов. В секторах по три (в одном секторе две) сопловые л опатки соединены между собой с помощью пайки.

Сопловые лопатки пустотелые, охлаждаемые воздухом из-за КВД, имеют дефлекторы для поджатия охлаждающего воздуха к внутренним стенкам лопаток и систему перфорационных отверстий в стенках профиля и трактовых полок лопаток, через которые охлаждающий воздух выходит на наружную поверхность лопатки и защищает ее от горячих газов. Ротор ТВД состоит из рабочего колеса (диска с рабочими лопатками), лабиринтного диска, вала ТВД.

Рабочая лопатка - охлаждаемая, состоит из хвостовика, ножки, пера и бандажной полки с гребешками.

Воздух на охлаждение подводится к хвостовику, проходит по радиальным каналам в теле пера лопатки и выходит через отверстия в передней и задней части пера лопатки в проточную часть.

Лопатка - это рабочая деталь ротора турбины. Ступень надежно фиксируется под оптимальным углом наклона. Элементы работают под колоссальными нагрузками, поэтому к ним предъявляют самые жесткие требования по качеству, надежности и долговечности.

Применение и виды лопаточных механизмов

Лопаточные механизмы широко применяются в машинах различного назначения. Наиболее часто используют их в турбинах и компрессорах.

Турбина - ротационный двигатель, работающий под действием значительных центробежных сил. Основной рабочий орган машины - ротор, на котором по всему диаметру закреплены лопатки. Все элементы помещены в общий корпус специальной формы в виде нагнетающего и подающего патрубков или сопел. На лопатки подается рабочая среда (пар, газ или вода), приводя в движение ротор.

Таким образом, кинетическая энергия движущегося потока преобразуется в механическую энергию на валу.

Различают два основных вида турбинных лопаток:

  1. Рабочие - находятся на вращающих валах. Детали передают механическую полезную мощность на присоединенную рабочую машину (часто это генератор). Давление на рабочих лопатках остается постоянным благодаря тому, что направляющие лопатки всю разность энтальпий преобразуют в энергию потока.
  2. Направляющие - закреплены в корпусе турбины. Данные элементы частично преобразуют энергию потока, благодаря чему вращение колес получает тангенциальное усилие. В турбине разница энтальпий должна быть понижена. Это достигается путем уменьшения числа ступеней. Если установить слишком много направляющих лопаток, то срыв потока будет угрожать ускоренному потоку турбины.

Методы изготовления турбинных лопаток

Турбинные лопатки изготавливают методом литья по выплавляемым деталям из высококачественного металлопроката. Используют полосу, квадрат, допускается применение штампованных заготовок. Последний вариант предпочтителен на крупных производствах, так как коэффициент использования металла достаточно высок, а трудозатраты - минимальны.

Лопасти турбин проходят обязательную термическую обработку. Поверхность покрывается защитными составами против развития коррозионных процессов, а также специальными составами, повышающие прочность механизма при работе в условиях высокой температуры. Например, никелевые сплавы практически не поддаются механической обработке, поэтому методы штамповки для производства лопаток не подходят.

Современные технологии подарили возможность производства турбинных лопаток методом направленной кристаллизации. Это позволило получить рабочие элементы с такой структурой, которую практически невозможно сломать. Внедряется метод изготовления монокристальной лопасти, то есть из одного кристалла.

Этапы производства турбинных лопаток:

  1. Литье или поковка. Литье позволяет получать лопатки высокого качества. Поковка производиться по спец заказу.
  2. Механическая обработка. Как правило, для механической обработки применяются токарно-фрезерные автоматизированные центры, например, японский комплекс Mazak или же на фрезерные обрабатывающие центра, такие как MIKRON швейцарского производства.
  3. В качестве финишной обработки применяют только шлифование.

Требования к лопаткам турбин, применяемые материалы

Лопатки турбины эксплуатируются в условиях агрессивной среды. Особо критична высокая температура. Детали работают под напряжением на растяжение, поэтому возникают высокие деформирующие усилия, растягивающие лопатки. Со временем детали касаются корпуса турбины, машина блокируется. Все это обуславливает применение материалов высочайшего качества для изготовления лопаток, способные выдерживать значительные нагрузки при крутящем моменте, а также любые усилия в условиях высокого давления и температуры. Качеством лопаток турбины оценивается общая эффективность агрегата. Напомним, что высокая температура необходима для повышения КПД машины, работающей по циклу Карно.

Лопатки турбины - ответственный механизм. Благодаря нему обеспечивается надежность работы агрегата. Выделим основные нагрузки во время работы турбины:

  • Возникают большие окружные скорости в условиях высокой температуры в паровом или газовом потоке, которые растягивают лопатки;
  • Формируются значительные статические и динамические температурные напряжения, не исключая и вибрационные нагрузки;
  • Температура в турбине достигает 1000-1700 градусов.

Все это предопределяет применение высококачественных жаропрочных и нержавеющих сталей для производства лопаток турбин.

Например, могут быть использованы такие марки как 18Х11МФНБ-ш, 15Х11МФ-ш, а также различные сплавы на основе никеля (до 65%) ХН65КМВЮБ.

В качестве легирующих элементов в состав такого сплава дополнительно вводят следующие компоненты: 6% алюминия, 6-10% вольфрама, тантала, рения и немного рутения.

Лопаточный механизм должен обладать определенной теплостойкостью. Для этого в турбине делают сложные системы охлаждающих каналов и выходных отверстий, которые обеспечивают создание воздушной пленки на поверхности рабочей или направляющей лопатки. Раскаленные газы не касаются лопасти, поэтому происходит минимальный нагрев, но сами газы не остывают.

Все это повышает КПД машины. Охлаждающие каналы формируются при помощи керамических стержней.

Для их производства применяют оксид алюминия, температура плавления которого достигает 2050 градусов.

Просмотров