Механика крыла. Механизация крыла самолета: описание, принцип работы и устройство. Для чего нужны закрылки и что могло с ними случиться

Когда летишь в самолете пассажиром и сидишь у иллюминатора напротив крыла, это кажется магией. Все эти штучки, которые выдвигаются, поднимаются, опускаются, убираются, а самолет в итоге летит. Но когда начинаешь обучение пилотированию и управляешь самолетом самостоятельно, становится ясно: никакой магии, а чистая физика, логика и здравый смысл.

Все вместе эти штуковины называются «механизация крыла». В буквальном переводе на английский high lift devices. Дословно – приспособления для увеличения подъемной силы. Более точно – для изменения характеристик крыла на разных стадиях полета.

По мере развития авиатехники количество этих устройств становилось все больше – закрылки, предкрылки, щитки, флапероны, элероны, элевоны, интерцепторы и другие средства механизации. Но самыми первыми изобрели закрылки. Они же являются самыми эффективными, а на некоторых самолетах – и единственными. И если маленький легкомоторный самолет вроде Цессна 172S теоретически на взлете можно обойтись и без них, то большой пассажирский авиалайнер без использования закрылков в прямом смысле слова не сможет оторваться от земли.

Не вся скорость одинаково полезна
Современное авиастроение – это вечные поиски баланса между прибылью и безопасностью. Прибыль – это возможность преодолевать как можно большие расстояния, то есть высокая скорость в полете. Безопасность – это, напротив, относительно невысокая скорость на взлете и особенно посадке. Как это совместить?

Чтобы быстро лететь, нужно крыло с узким профилем. Характерный пример – сверхзвуковые истребители. Вот только для взлета ему нужна огромная полоса для разбега, а для посадки и вовсе специальный тормозной парашют. Если сделать крыло широким и толстым, как у винтовых транспортников, садиться будет намного проще, но и скорость в полете намного ниже. Как быть?

Вариантов два – оборудовать все аэродромы длинными-длинными полосами, чтобы их хватало для длинных разбегов и пробегов, либо сделать так, чтобы профиль крыла мог меняться на разных стадиях полета. Как ни странно звучит, второй вариант намного проще.

Как взлетает самолет
Чтобы самолет взлетел, нужно, чтобы подъемная сила крыла превысила силу притяжения. Это азы, с которых начинается теоретическое обучение на пилота . Когда самолет стоит на земле, подъемная сила равна нулю. Увеличить ее можно двумя способами.

Первый – включить двигатели и начать разбег, потому что подъемная сила зависит от скорости. В принципе, для легкого самолета как Цессна-172 на длинной полосе этого вполне может хватить. Но когда самолет тяжелый, а полоса короткая, простого набора скорости не хватит.

Тут мог бы помочь второй вариант – увеличить угол атаки (задрать нос самолета вверх). Но и здесь не все так просто, потому что увеличивать угол атаки бесконечно нельзя. В какой-то момент он превысит так называемое критическое значение, после которого самолет рискует попасть в сваливание. Меняя форму крыла с помощью закрылков, пилот самолета может регулировать скорость (не самолета, а всего лишь обтекания крыла воздушным потоком) и угол атаки.

Обучение пилотированию: от теории к практике
Выпущенные закрылки меняют профиль крыла, а именно - увеличивают его кривизну. Очевидно, что вместе с этим увеличивается сопротивление. Зато уменьшается скорость сваливания. На практике это означает, что угол атаки не изменился, а подъемная сила выросла.

Почему это важно
Чем меньше угол атаки – тем ниже скорость сваливания. То есть теперь пилот самолета может увеличить угол атаки и взлететь, даже если не хватает скорости (мощности двигателя) и длины полосы для разбега.

Но у любой медали есть обратная сторона. Увеличение подъемной силы неизбежно ведет к увеличению сопротивления. То есть придется увеличить тягу, а значит вырастет расход топлива. Зато на посадке избыточное сопротивление напротив даже полезно, поскольку помогает быстрее затормозить самолет.

Все дело в градусах
Конкретные значения сильно зависят от модели, веса, загрузки самолета, длины ВПП, требований производителя и много-много чего еще, чуть ли не температуры за бортом. Но как правило для взлета закрылки выпускают на 5-15 градусов, для посадки – на 25-40 градусов.

Почему так – уже было сказано выше. Чем круче угол – тем больше сопротивление, тем эффективнее торможение. Отличный способ увидеть все это на практике – отправиться в пробный полет, в котором пилот самолета все покажет, расскажет и даже даст попробовать управлять самолетом самому.

Понимая это, легко понять и то, почему после перехода в горизонтальный полет закрылки, напротив, жизненно важно убрать. Дело в том, что изменившаяся форма крыла вызывает не просто сопротивление, но и меняет само качество набегающего потока. Конкретно речь идет о так называемом приграничном слое – том, который непосредственно соприкасается с крылом. Из плавного (ламинарного) он превращается в турбулентый.

И чем сильнее кривизна крыла – тем сильнее турбулентность, а там уже и до срыва потока недалеко. Более того, на высокой скорости «забытые» закрылки могут элементарно оторваться, а это уже критично, поскольку любая ассиметрия (вряд ли их оба оторвет одновременно) грозит потерей управления, вплоть до штопора.

Что еще бывает
Предкрылки. Как видно из названия, расположена в передней части крыла. По своему предназначению закрылками – позволяют регулировать несущие свойства крыла. в частности, летать на больших углах атаки, а значит на меньших скоростях.

Элероны. Расположены ближе к концовкам крыльев и позволяют регулировать крен. В отличие от закрылков, работающих строго синхронно, элероны двигаются дифференциально – если один вверх, то второй вниз.

Особой разновидностью элеронов являются флапероны – гибрид закрылков (англ. flap) и элеронов (aileron). Чаще всего ими оборудуют легкие самолеты.

Интерцепторы. Своего рода «аэродинамический тормоз» - расположенные на верхней плоскости крыла поверхности, которые при посадке (или прерванном взлете) поднимаются, увеличивая аэродинамическое сопротивление.

А еще бывают элерон-интерцепторы, многофункциональные интерцепторы (они же спойлеры), плюс каждая из перечисленных выше категорий имеет свои разновидности, так что перечислить все в рамках статьи невозможно физически. Как раз для этого и существует летная школа и курсы обучения на пилота .

На современных самолетах с целью получения высоких летно-тактических характеристик, в частности для достижения больших скоростей полета, значительно уменьшены и площадь крыла и его удлинение. А это отрицательно сказывается на аэродинамическом качестве самолета и особенно на взлетно-посадочных характеристиках.

Для удержания самолета в воздухе в прямолинейном полете с постоянной скоростью необходимо, чтобы подъемная сила была равна весу самолета - Y = G . Но так как

(30)

Из формулы (30) следует, что для удержания самолета в воздухе на наименьшей скорости (при посадке, например) нужно, чтобы коэффициент подъемной силы С y был наибольшим. Однако С y можно увеличивать путем увеличения угла атаки только до α крит. Увеличение угла атаки больше критического приводит к срыву потока на верхней поверхности крыла и к резкому уменьшению С y , что недопустимо. Следовательно, для обеспечения равенства подъемной силы и веса самолета необходимо увеличить скорость полета .

Вследствие указанных причин посадочные скорости современных самолетов довольно велики. Это сильно усложняет взлет и посадку и увеличивает длину пробега самолета.

С целью улучшения взлетно-посадочных характеристик и обеспечения безопасности на взлете и особенно посадке необходимо посадочную скорость по возможности уменьшить. Для этого нужно, чтобы С y был возможно больше. Однако профили крыла, имеющие большое Су макс, обладают, как правило, большими значениями лобового сопротивления Сх мин , так как у них большие относительные толщина и кривизна. А увеличение Сх. мин , препятствует увеличению максимальной скорости полета. Изготовить профиль крыла, удовлетворяющий одновременно двум требованиям: получению больших максимальных скоростей и малых посадочных - практически невозможно.

Поэтому при проектировании профилей крыла самолета стремятся в первую очередь обеспечить максимальную скорость, а для уменьшения посадочной скорости применяют на крыльях специальные устройства, называемые механизацией крыла.

Применяя механизированное крыло, значительно увеличивают величину Су макс, что дает возможность уменьшить посадочную скорость и длину пробега самолета после посадки, уменьшить скорость самолета в момент отрыва и сократить длину разбега при взлете. Применение механизации улучшает устойчивость и управляемость самолета на больших углах атаки. Кроме того, уменьшение скорости при отрыве на взлете и при посадке увеличивает безопасность их выполнения и сокращает расходы на строительство взлетно-посадочных полос.

Итак, механизация крыла служит для улучшения взлетно-посадочных характеристик самолета путем увеличения максимального значения коэффициента подъемной силы крыла Cу макс .



Суть механизации крыла состоит в том, что с помощью специальных приспособлений увеличивается кривизна профиля (в некоторых случаях и площадь крыла), вследствие чего изменяется картина обтекания. В результате получается увеличение максимального значения коэффициента подъемной силы.

Эти приспособления, как правило, выполняются управляемыми в полете: при полете на малых углах атаки (при больших скоростях полета) они не используются, а применяются лишь на взлете, на посадке, когда увеличение угла атаки не обеспечивает получения нужной величины подъемной силы.

Существуют следующие виды механизации крыла: щитки, закрылки, предкрылки, отклоняемые носки крыла, управление пограничным слоем, реактивные закрылки .

Щиток представляет собой отклоняющуюся поверхность, которая в убранном положении примыкает к нижней, задней поверхности крыла. Щиток является одним из самых простых и наиболее распространенных средств повышения Су макс.

Увеличение Су макс при отклонении щитка объясняется изменением формы профиля крыла, которое можно условно свести к увеличению эффективного угла атаки и вогнутости (кривизны) профиля.

При отклонении щитка образуется вихревая зона подсасывания между крылом и щитком. Пониженное давление в этой зоне распространяется частично на верхнюю поверхность профиля у задней кромки и вызывает отсос пограничного слоя с поверхности, лежащей выше по течению. За счет отсасывающего действия щитка предотвращается срыв потока на больших углах атаки, скорость потока над крылом возрастает, а давление уменьшается. Кроме того, отклонение щитка повышает давление под крылом за счет увеличения эффективной кривизны профиля и эффективного угла атаки α эф .

Благодаря этому выпуск щитков увеличивает разность относительных давлений над крылом и под крылом, а следовательно, и коэффициент подъемной силы Су .

На рис. 42 показан график зависимости С y от угла атаки для крыла с различным положением щитка: убранное, взлетное φ щ = 15°, посадочное φ щ = 40°.

При отклонении щитка вся кривая Су щ = f(α) смещается вверх почти эквидистантно кривой Су = f (α) основного профиля.

Из графика видно, что при отклонении щитка в посадочное положение (φ щ = 40°) приращение Су составляет 50-60%, а критический угол атаки при этом уменьшается на 1-3°.

Для увеличения эффективности щитка конструктивно его выполняют таким образом, что при отклонении он одновременно смещается назад, к задней кромке крыла. Тем самым увеличиваются эффективность отсоса пограничного слоя с верхней поверхности крыла и протяженность зоны повышенного давления под крылом.

При отклонении щитка одновременно с увеличением коэффициента подъемной силы увеличивается и коэффициент лобового сопротивления, аэродинамическое качество крыла при этом уменьшается.

Закрылок . Закрылок представляет собой отклоняющуюся часть задней кромки крыла либо поверхность, выдвигаемую (с одновременным отклонением вниз) назад из-под крыла. По конструкции закрылки делятся на простые (нещелевые), однощелевые и многощелевые .

Рис. 39. Профиль крыла со щитком, смещающимся назад

Рис. 40. Закрылки: а - нещелевой; б - щелевой

Нещелевой закрылок увеличивает коэффициент подъемной силы С y за счет увеличения кривизны профиля. При наличии между носком закрылка и крылом специально спрофилированной щели эффективность закрылка увеличивается, так как воздух, проходящий с большой скоростью через сужающуюся щель, препятствует набуханию и срыву пограничного слоя. Для дальнейшего увеличения эффективности закрылков иногда применяют двухщелевые закрылки, которые дают прирост коэффициента подъемной силы С y профиля до 80%.

Увеличение Су макс крыла при выпуске закрылков или щитков зависит от ряда факторов: их относительных размеров, угла отклонения, угла стреловидности крыла. На стреловидных крыльях эффективность механизации, как правило, меньше, чем у прямых крыльев. Отклонение закрылков, так же как и щитков, сопровождается не только повышением С y , но в еще большей степени приростом С x , поэтому аэродинамическое качество при выпущенной механизации уменьшается.

Критический угол атаки при выпущенных закрылках незначительно уменьшается, что позволяет получить С умакс при меньшем подъеме носа самолета (рис. 37).

Рис. 41. Профиль крыла с щитком

Рис. 42. Влияние выпуска щитков на кривую Су=f()

Рис. 43. Поляра самолета с убранными и выпущенными щитками

Предкрылок представляет собой небольшое крылышко, находящееся впереди крыла (рис. 44).

Предкрылки бывают фиксированные и автоматические.

Фиксированные предкрылки на специальных стойках постоянно закреплены на некотором удалении от носка профиля крыла. Автоматические предкрылки при полете на малых углах атаки плотно прижаты к крылу воздушным потоком. При полете на больших углах атаки происходит изменение картины распределения давления по профилю, в результате чего предкрылок как бы отсасывается. Происходит автоматическое выдвижение предкрылка (рис. 45).

При выдвинутом предкрылке между крылом и предкрылком образуется суживающаяся щель. Увеличиваются скорость воздуха, проходящего через эту щель, и его кинетическая энергия. Щель между предкрылком и крылом спрофилирована таким образом, что воздушный поток, выходя из щели, с большой скоростью направляется вдоль верхней поверхности крыла. Вследствие этого скорость пограничного слоя увеличивается, он становится более устойчивым на больших углах атаки и отрыв его отодвигается на большие углы атаки. Критический угол атаки профиля при этом значительно увеличивается (на 10°-15°), а Cу макс увеличивается в среднем на 50% (рис. 46).

Обычно предкрылки устанавливаются не по всему размаху, а только на его концах. Это объясняется тем, что, кроме увеличения коэффициента подъемной силы, увеличивается эффективность элеронов, а это улучшает поперечную устойчивость и управляемость. Установка предкрылка по всему размаху значительно увеличила бы критический угол атаки крыла в целом, и для его реализации на посадке пришлось бы стойки основных ног шасси делать очень высокими.

Рис. 44. Предкрылок

Рис. 45. Принцип действия автоматического предкрылка:

а - малые углы атаки; б – большие углы атаки

Фиксированные предкрылки устанавливаются, как правило, на нескоростных самолетах, так как такие предкрылки значительно увеличивают лобовое сопротивление, что является помехой для достижения больших скоростей полета.

Отклоняемый носок (рис. 47) применяется на крыльях с тонким профилем и острой передней кромкой для предотвращения срыва потока за передней кромкой на больших углах атаки.

Изменяя угол наклона подвижного носка, можно для любого угла атаки подобрать такое положение, когда обтекание профиля будет безотрывным. Это позволит улучшить аэродинамические характеристики тонких крыльев на больших углах атаки. Аэродинамическое качество при этом может возрастать.

Искривление профиля отклонением носка повышает Су макс крыла без существенного изменения критического угла атаки.

Рис. 46. Кривая Су =f (α) для крыла с предкрылками

Рис. 47. Отклоняемый носок крыла

Управление пограничным слоем (рис. 48) является одним из наиболее эффективных видов механизации крыла и сводится к тому, что пограничный слой либо отсасывается внутрь крыла, либо сдувается с его верхней поверхности.

Для отсоса пограничного слоя или для его сдувания применяют специальные вентиляторы либо используют компрессоры самолетных газотурбинных двигателей.

Отсасывание заторможенных частиц из пограничного слоя внутрь крыла уменьшает толщину слоя, увеличивает его скорость вблизи поверхности крыла и способствует безотрывному обтеканию верхней поверхности крыла на больших углах атаки.

Сдувание пограничного слоя увеличивает скорость движения частиц воздуха в пограничном слое, тем самым предотвращает срыв потока.

Управление пограничным слоем дает хорошие результаты в сочетании с щитками или закрылками.

Рис. 48. Управление пограничным слоем

Рис. 49. Реактивный закрылок


Реактивный закрылок (рис. 49) представляет струю газов, вытекающую с большой скоростью под некоторым углом вниз из специальной щели, расположенной вблизи задней кромки крыла. При этом струя газа воздействует на поток, обтекающий крыло, подобно отклоненному закрылку, вследствие чего перед реактивным закрылком (под крылом) давление повышается, а позади его понижается, вызывая увеличение скорости движения потока над крылом. Кроме того образуется реактивная сила Р , создаваемая вытекающей струёй.

Эффективность действия реактивного закрылка зависит от угла атаки крыла, угла выхода струи и величины силы тяги Р . Их используют для тонких, стреловидных крыльев малого удлинение Реактивный закрылок позволяет увеличить коэффициент подъемной силы Cу макс в 5-10 раз . Для создания струи используются газы, выходящие из турбореактивного двигателя.

Механизация крыла - это система устройств (закрылки, предкрылки, интерцепторы, спойлеры, тормозные щитки) предназначенные для управления подъёмной силой У и лобовым сопротивлением X самолёта, улучшая взлётно-посадочные характеристики (ВПХ).

Рост скоростей полёта самолёта, которым сопровождается развитие авиации, влечёт за собой рост взлётно-посадочных скоростей, что усложняет технику пилотирования и требует увеличения длины взлетно-посадочной полосы (ВПП).

Основным способом улучшения ВПХ является оснащение крыла мощной механизацией.

Задача механизации крыла:

При взлёте - создание наибольшей подъёмной силы У без значительного увеличения лобового сопротивления X;

При посадке - наибольшей подъёмной силы У и наибольшего лобового сопротивления X;

Улучшение маневренных характеристик и активного парирования перегрузок, возникающих во время полёта.

Минимальная скорость полёта соответствует полёту на околокритических углах атаки при С у ≈ С у max


Зависимость Су= f (α) для различных видов механизации.

1. Крыло без механизации.

2. Крыло с предкрылком.

3. Крыло с щелевым закрылком.

4. Крыло с щелевым закрылком и предкрылком.

К основным видам механизации крыла относится:

Закрылки;

Предкрылки;

Интерцепторы;

Требования к механизации крыла:

Максимальное С у α при отклонении средств механизации в посадочное положение при посадочных углах атаки α самолёта;

Минимальное С х α в убранном положении средств механизации;

максимальное качество К при разбеге самолёта и возможное С у α при отклонении средств механизации во взлётное положение;

Возможно меньшее изменение смещения центра давления (ЦД) крыла при отклонении

ВПМ (взлётно - посадочной механизации);

Синхронность действий ВПМ на обеих консолях крыла;

Простота конструкции и надёжность работы.

Факторы увеличивающие несущую способность крыла и тем самым улучшающие ВПХ самолёта достигаются:

Увеличением эффективной кривизны профиля крыла при отклонении

средств механизации;

Увеличением площади крыла;

Управлением пограничным слоем для безотрывного обтекания

верхней поверхности крыла и затягивания срыва на бОльшие углы атаки за счёт скорости пограничного слоя: - эффектом щелей;

Отсосом пограничного слоя.

Улучшение взлетно-посадочных характеристик самолета и, прежде всего, снижение его посадочной скорости и скорости отрыва на взлете обеспечивается применением средств механизации крыла. К этим средствам относятся устройства, позволяющие изменять несущую способность и сопротивление крыла. Они могут устанавливаться по передней кромке крыла - предкрылок, отклоняемый носок, по задней кромке - щитки, закрылки (одно-, двух-, трехщелевые) и на верхней поверхности крыла - тормозные щитки и гасители подъемной силы. Закрылки, щитки, предкрылки перед посадкой отклоняются (и выдвигаются) на максимальные углы, обеспечивая прирост несущей способности крыла (С yа S) за счет увеличения кривизны профиля, некоторого увеличения площади крыла и за счет щелевого эффекта. Рост несущей способности крыла уменьшает посадочную скорость самолета. На взлете эта механизация отклоняется на меньшие углы, обеспечивая некоторое увеличение несущей способности при незначительном росте сопротивления, в результате чего сокращается длина разбега самолета. Тормозные щитки и гасители подъемной силы обычно отклоняются на пробеге, обеспечивая резкое падение подъемной силы крыла, что позволяет более интенсивно использовать тормоза колес и сокращать длину пробега. На величину посадочной скорости и скорости отрыва они не влияют. Тормозные щитки и гасители подъемной силы также могут использоваться в полете для уменьшения аэродинамического качества и увеличения угла планирования при снижении.

На рисунке цифрами обозначены:
1 - предкрылки, 2 - закрылки, 3 - гасители подъемной силы- интерцепторы, спойлеры, 4 - тормозной щиток, 5- элерон.

Щитки представляют собой отклоняемые вниз поверхности, расположенные в нижней части крыла. В неотклонённом положении щитки вписываются в контур профиля крыла. Угол отклонения до 60°.

Отклоняемый выдвижной


- двухщелевые;

Трёхщелевые раздвижные.

Рис.3. 7. Двухщелевой закрылок

Хорда закрылков составляет 30 - 40 % хорды крыла.

Повышение коэффициента С у у крыла происходит вследствии:

Увеличения вогнутости крыла;

Увеличения площади крыла;

Организации безсрывного обтекания крыла.

Так как закрылок отклоняется вниз, то увеличивается вогнутость, одновременно выдвигается назад и увеличивается хорда, а значит, площадь крыла S KP .

Применение щелевых закрылков создаёт между крылом и закрылком профилированную щель, через которую воздух устремляется из области повышенного давления под крылом в область пониженного давления над крылом. При этом сдувается пограничный слой с верхней стороны закрылка и отсасывание его.

Элементы конструкции закрылка:

Лонжероны, нервюры, стрингеры, обшивка;

Каретки и рельсы;

Винтовые подъёмники, которые служат для перемещения закрылков.

В трёхщелевом закрылке: - дефлектор;

Силовая центральная часть;

Хвостик.

Предкрылки - это профилированный подвижный элемент крыла, расположенный в носовой части крыла по всему размаху, либо на концевых его частях против элеронов (концевой предкрылок).

Предкрылок имеет: эл. обогрев -Ту-154; воздушно-тепловой - Ил-76. Состоит из секций.

Предкрылок обеспечивает возможность реализации прироста С у α , даваемого средствами механизации, повышает эффективность элеронов на больших углах атаки α и повышает поперечную устойчивость самолёта (при стреловидных крыльях).

Тип: - отклоняемые носки;

Выдвижные с образованием щели между крылом и предкрылком.

Конструкция: - лонжерон, нервюры, обшивка, рельсы, каретки, винтовые преобразователи.

Рис. 3.8. Предкрылок.

Предкрылки могут управлятся пилотом или автоматически. Предкрылки выдвигаются вперёд и вниз и при этом:

Увеличивается площадь крыла S kp и кривизна профиля;

Образуется щель и выходящая струя из щели с большой скоростью

прижимает воздушный поток к верхней поверхности крыла Использование предкрылков увеличивает на 40-50% С у max за счёт увеличения критического угла атаки (α кр.)

Интерцепторы это подвижные части крыла в виде профилированных щитков (пластин), расположенные на верхней поверхности крыла перед закрылками и служащие для управления подъёмной силой.

Интерцепторы (спойлеры), с точки зрения а/д, это гасители подъёмной силы, тормозные щитки, отклоняющиеся вверх симметрично на обеих консолях крыла, вызывая срыв потока, за счёт этого уменьшается подъёмная сила и увеличивается лобовое сопротивление, а в убранном положении утоплены в крыло. В элеронном режиме вверх отклоняется только тот, где отклонился элерон вверх, при этом создаётся крен самолёта, т.е. увеличивается эффективность элеронов.


Интерцепторы применяются в полёте и на земле. В полёте для изменения эшелона полёта, т. ↓H и ↓V. На земле для Х (лобового сопротивления) и как следствие ↓L пробега после приземления.

В настоящее время разработаны энергетические средства механизации крыла, в которых используется сжатый воздух, подаваемый от компрессоров двигателей или специальных вентиляторов.

Улучшение а/д характеристик крыла достигается:

Управлением пограничным слоем за счет отсоса или сдува с верхней поверхности крыла, предкрылков и закрылков через специальные отверстия, щели, пористые поверхности;

Применением струйно-реактивного закрылка – профилированной щели вдоль задней кромки крыла, через которую назад и вниз выбрасывается струя воздуха.

Она эжектирует окружающий воздух, увеличивает скорость обтекания крыла, создает дополнительную силу за счет вертикальной составляющей реактивной тяги воздушной струи.

На современных самолётах, как правило, применяется комплексная механизация крыла, т.е. сочетание различных видов механизация крыла, т.е. сочетание различных видов механизации.


Элероны это подвижные части крыла, расположенные у задней кромки крыла на его концах и отклоняемые одновременно в противоположные стороны (один элерон вверх, а другой - вниз) для создания крена самолёта.

Предназначены элероны для управления самолётом относительно его продольной оси ОХ. Управление производится штурвалом пилота.

Требования к элеронам: обеспечение эффективности управления по крену на всех режимах полёта. Это достигается:

Исключением заклинивания элеронов при изгибе крыла в полёте;

Весовой балансировкой элеронов;

Уменьшением шарнирных моментов (за счёт а/д компенсации); уменьшением дополнительного сопротивления в отклонённом и убранном положениях;

Уменьшением момента рыскания при отклонении элеронов;

Применение элерон-интерцепторов;

Применение дифференциально отклоняемых половин стабилизатора. Конструкция элеронов: форма аналогичная крылу и состоит из каркаса и обшивки.

Каркас: лонжерон, стрингера, нервюры, диафрагмы и обшивка.


Похожая информация.


1. Взлет самолета можно производить с применением закрылков и без их применения.

2. В зависимости от условий, старта взлет самолета производить:

а) без применения закрылков с использованием номинальной мощности двигателя;

б) с применением закрылков, отклоненных на 25°, и с использованием номинальной мощности двигателя;

в) с применением закрылков, отклоненных на 30 0 , и с использованием взлетной мощности двигателя.

Отклонять закрылки на взлете более чем на 30° не рекомендуется.

3. Взлет самолета производить с помощью встречного ветра не более 12 м/сек.

Взлет без применения закрылков

4. Длина разбега самолета (транспортный вариант) без применения закрылков и с использованием номинальной мощности двигателя при нормальном полетном весе 5250 кг составляет 360 м.

Примечание. Длина разбега приведена к стандартным условиям (атмосферное давление 760 мм рт. ст., температура наружного воздуха +!5°С) при отсутствии ветра.

При взлете с мягкого грунта длина разбега увеличивается на, 29%, с песчаного покрова - на 30-35%.

По достижении скорости 105-110 км/час происходит отрыв самолета от земли.

5. После отрыва выдерживание самолета производится с постепенным отходом от земли и увеличением скорости до 140 км/час, затем самолет переводится на набор высоты.

6. Дальнейший набор высоты производить на скорости 140-150 км/час, которая является наивыгоднейшей скоростью набора высоты.

Взлет с применением закрылков

7. Использование закрылков на взлете сокращает длину разбега и взлетную дистанцию на 30-35%. Закрылки могут отклоняться на 25 и 30° в зависимости от нагрузки самолета и состояния аэродрома.

При закрылках, отклоненных на 25°, взлет производится на номинальной мощности двигателя
(рк = 900 мм рт. ст., п = 2100 об/мин). Однако наименьшая длина разбега и взлетная дистанция получаются при отклоненных на 30° закрылках с одновременным использованием взлетной мощности двигателя
(рк = 1050 мм рт. ст., п = 2200 об/мин). В этом случае при взлетном весе 5500 кг длина разбега составляет 207 м, время разбега 14,3 сек, а длина взлетной дистанции 585 м.

Данные приведены к стандартным условиям.

8. Отрыв от земли самолета с закрылками, отклоненными на 25-30°, происходит на скорости 85-90 км/час.

При взлете с отклоненными закрылками на некоторых самолетах автоматические предкрылки открываются в середине разбега на скорости около 50 км/час и остаются открытыми до достижения скорости 85 км/час, после чего полностью закрываются.

9. На высоте не менее 50 м при скорости 120 км/час постепенно убрать закрылки, контролируя их положение по указателю и непосредственным наблюдением за закрылками. Одновременно увеличивать скорость набора высоты так, чтобы к моменту полной уборки закрылков она составляла 135-140 км/час.

10. После уборки закрылков перейти на набор высоты. Набор высоты производить на скорости 140-150 км/час.

Для получения максимальной скороподъемности у земли набор высоты рекомендуется производить с закрылками, отклоненными на 5°, до высоты 500 м. Дальнейший набор высоты производить с полностью убранными закрылками.

ПРЕДУПРЕЖДЕНИЕ. Если после взлета с отклоненными закрылками не удается убрать их из-за неисправности системы управления, необходимо произвести посадку на аэродроме взлета. При заходе на посадку в этом случае на разворотах не допускать крена больше 10- 15° и скорости полета более 150 км I час. Полет самолета со скоростью, превышающей 150 км/ час, при опущенных закрылках запрещается.

11. Взлет производить с использованием одновременно верхних и нижних закрылков. Раздельно пользоваться закрылками>

l2. Использовать закрылки при взлете самолета рекомендуется при скорости ветра не более 10м/сек.

13. При взлете самолета на лыжном шасси учитывать, что при температурах наружного воздуха от 0° С и выше, особенно при мокром снеге, длина разбега может оказаться на 10-20% больше, чем при стандартной температуре минус 10° С.

Предварительные данные расшифровки «черных ящиков» сократили количество версий о причинах катастрофы Ту-154. Это могла быть ошибка пилотирования или поломка самолета.

Читайте также 21:13 27 декабря 2016 Расшифровку последних минут жизни пилотов опубликовал Life. Известно, что сначала пилот докладывает о том, что скорость 300, забирают стойки. Потом звучит резкий сигнал. Один из пилотов восклицает: «Закрылки, с*ка!». А затем звучит крик: «Командир, падаем!».

Точные причины произошедшего установят следователи. Пока же эксперты выдвигают варианты из-за которых борт мог рухнуть в море. «Сноб» выяснил, как взлетает Ту-154 и зачем нужны закрылки, о которых пилоты кричали перед гибелью.

Как взлетает самолет Ту-154:

Сначала пилот получает от диспетчера разрешение на взлет.
-Потом пилот отключает тормоза, открывает закрылки, самолет набирает скорость.
-На скорости 260 км/ч начинается подъем переднего колеса шасси.
-На скорости 300 км/ч - самолет отрывается от взлетной полосы.
-После отрыва на 5 метров убирается шасси.
-На 120 метрах отрыва самолет изменяет положение со взлетных 20 градусов наклона до 15
-На скорости в 360 км/ч убирают закрылки. Стабилизатор из взлетного положения переходит в полетное. Самолет выравнивает градус наклона до 0.

Для чего нужны закрылки и что могло с ними случиться

Закрылки - это специальные устройства на задней части крыла самолета. Они представляют собой симметрично расположенные отклоняемые поверхности.

Самолет отрывается от земли лишь тогда, когда подъемная сила превысит вес самолета. Для этого и нужны закрылки. Они меняют конфигурацию крыла, за счет чего подъемная сила увеличивается, а скорость на взлете и посадке - уменьшается.

На Ту-154 закрылки могли убрать несинхронно - один из них мог заклинить. Это могло вызвать неравномерный прирост подъемной силы.

Мнение эксперта

Читайте также 20:04 25 декабря 2016
По словам заслуженного пилота РФ Константина Онохина, налет у пилотов Ту-154 был 3 тысячи часов. Это много для истребителя, но для транспортной авиации международных рейсов этого мало. Ту-154 - хороший самолет, но требующий квалификации командира и членов экипажа выше среднего.

Эксперт напоминает, что взлетать и садиться самолеты лучше против ветра. Но аэропорт Сочи сложный в этом плане - ветер там дует со всех сторон. С набором высоты попутный ветер мог усилиться и дуть в хвост, скорость упала, а центровка стала передней. У Ту-154 с центровкой особый момент - у самолета есть четвертый бак с топливом впереди, который способствует снижению центра тяжести вперед. Это очень опасно.

«Пилот держал штурвал на пределе, но все равно произошло касание о водную поверхность, — поясняет Константин Онохин. — Почему такой разброс остатков самолета? Это как бросать камешки блинчиком на озере. Вот и самолет также - несколько ударов по воде, а потом под воду. Жалко ребят, они попали в очень трудное положение, из которого оказалось невозможно выбраться».

Также сейчас появляются мнения летчиков о том, что пилоты могли ошибиться и вместо шасси убрать закрылки.

Отметим, что пока все версии специалистов - предположительные. Точную и официальную причину назовут после изучения всех фактов произошедшей катастрофы.

Просмотров