Преобразователь напряжение - ток схема. Преобразователь напряжение-ток с точно устанавливаемой зоной нечувствительности Усилитель преобразователь тока в напряжение

Один из самых простых способов измерения тока в электрической цепи - это измерение падения напряжения на резисторе, включенном последовательно с нагрузкой. Но при прохождении тока через этот резистор, на нем выделяется бесполезная мощность в виде тепла, поэтому оно выбирается минимально возможной величины, что в свою очередь влечет за собой последующее усиление сигнала. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки.

Схема измерения тока нагрузки в отрицательном полюсе приведена на рисунке 1.

Эта схема и часть информации заимствована из журнала «Компоненты и технологии» №10 за 2006г. Михаил Пушкарев [email protected]
Преимущества:
низкое входное синфазное напряжение;
входной и выходной сигнал имеют общую «землю»;
простота реализации с одним источником питания.
Недостатки:
нагрузка не имеет непосредственной связи с «землей»;
отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит много ОУ, предназначенных для работы с однополярным питанием. Схема измерения тока с применением операционного уси¬лителя приведена на рис. 1. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется двухполярное питание усилителя.

Измерение тока в положительном полюсе нагрузки


Достоинства:
нагрузка заземлена;
обнаруживается короткое замыкание в нагрузке.
Недостатки:
высокое синфазное входное напряжение (зачастую очень высокое);
необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).
Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

В схеме на рис. 2 можно применить любой из подходящих по допустимому напряжению питания операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

Но есть ОУ, которые способны работать при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 3, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В. Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. Для измерения тока в положительном полюсе есть и специализированные микросхемы, например — INA138 и INA168.

INA138 и INA168

— высоковольтные, униполярные мониторы тока. Широкий диапазон входных напряжений, низкий потребляемый ток и малые габариты — SOT23, позволяют использовать эту микросхему во многих схемах. Напряжение источника питания от 2.7 В до 36 В для INA138 и от 2.7 В до 60 В для INA168. Входной ток — не более 25мкA, что позволяет производить измерение падения напряжения на шунте с минимальной ошибкой. Микросхемы являются преобразователями ток — напряжение с коэффициентом преобразования от1 до 100 и более. INA138 и INA168 в корпусах SOT23-5 имеют диапазон рабочих температур -40°C к +125°C.
Типовая схема включения взята из документации на эти микросхемы и показана на рисунке 4.

OPA454

— новый недорогой высоковольтный операционный усилитель компании Texas Instruments с выходным током более 50 мА и полосой пропускания 2,5 МГц. Одно из преимуществ — высокая стабильность OPA454 при единичном коэффициенте усиления.

Внутри ОУ организована защита от превышения температуры и перегрузки по току. Работоспособность ИС сохраняется в широком диапазоне напряжений питания от ±5 до ±50 В или, в случае однополярного питания, от 10 до 100 В (максимум 120 В). У OPA454 существует дополнительный вывод «Status Flag» — статусный выход ОУ с открытым стоком, — что позволяет работать с логикой любого уровня. Этот высоковольтный операционный усилитель обладает высокой точностью, широким диапазоном выходных напряжений, не вызывает проблем при инвертировании фазы, которые часто встречаются при работе с простыми усилителями.
Технические особенности OPA454:
Широкий диапазон питающих напряжений от ±5 В (10 В) до ±50 В (100 В)
(предельно до 120 В)
Большой максимальный выходной ток > ±50 мА
Широкий диапазон рабочих температур от -40 до 85°С (предельно от -55 до 125°С)
Корпусное исполнение SOIC или HSOP (PowerPADTM)
Данные на микросхему приведены в «Новости электроники» №7 за 2008г. Сергей Пичугин

Усилитель сигнала токового шунта на основной шине питания.

В радиолюбительской практике для схем, параметры которых не столь жесткие, подойдут дешевые сдвоенные ОУ LM358, допускающие работу с входными напряжениями до 32В. На рисунке 5 показана одна из многих типовых схем включения микросхемы LM358 в качестве монитора тока нагрузки. Кстати не во всех «даташитах» имеются схемы ее включения. По всей вероятности эта схема явилась прототипом схемы, приведенной в журнале «Радио» И. Нечаевым и о которой я упоминал в статье «Индикатор предельного тока ».
Приведенные схемы очень удобно применять в самодельных БП для контроля, телеметрии и измерения тока нагрузки, для построения схем защиты от коротких замыканий. Датчик тока в этих схемах может иметь очень маленькое сопротивление и отпадает необходимость подгонки этого резистора, как это делается в случае обычного амперметра. Например, напряжение на резисторе R3, в схеме на рисунке 5 равно: Vo = R3∙R1∙IL / R2 т.е. Vo = 1000∙0,1∙1A / 100 = 1В. Одному амперу тока, протекающему через датчик, соответствует один вольт падения напряжения на резисторе R3. Величина этого соотношения зависит от величины всех резисторов входящих в схему преобразователя. Отсюда следует, что сделав резистор R2 подстроечным, можно спокойно им компенсировать разброс сопротивления резистора R1. Это относится и к схемам, показанным на рисунках 2 и 3. В схеме, представленной на рис. 4, можно изменять сопротивление нагрузочного резистора RL. Для уменьшения провала выходного напряжения блока питания, сопротивление датчика тока – резистор R1 в схеме на рис.5 вообще лучше взять равным 0,01 Ом, изменив при этом номинал резистора R2 на 10 Ом или увеличив номинал резистора R3 до 10кОм.

Введение

3. Повышение линейности ПНТ

4. Исследование ПНТ

Библиографический список


Введение

Преобразователи напряжение-ток (ПНТ) также являются важным элементом в схемотехнике аналоговых электронных устройств. На их основе могут быть выполнены различные прецизионные операционные усилители, в которых ПНТ используется как входной дифференциальный каскад; ПНТ органично входят в структуры АПН и могут использоваться в различных измерительных схемах.


1. Простейшие преобразователи напряжения в ток

Принцип преобразования напряжения в ток может быть проиллюстрирован с помощью простейшего усилительного каскада на одиночном транзисторе (рис. 1). (Отметим, что резистор R1 выполняет функцию подключения коллектора к шине питания; он достаточно низкоомный и служит как датчик тока при измерении тока коллектора.)

Рис. 1. Простейший преобразователь напряжение-ток на одиночном транзисторе

Предположим, что напряжение смещения UC транзистору обеспечивает источник сигнала UС. Тогда для тока эмиттера IЭ транзистора может быть записано следующее уравнение:

. (1)

Оценивать качество преобразования входного напряжения в выходной ток (ток коллектора IK транзистора) наиболее просто, находя крутизну прямого преобразования S:


при условии, что a» 1.

Находить производную от выражения (1) в явном виде – достаточно громоздкая процедура, поэтому можно найти производную dUC/dIk, а затем взять обратную величину:

, . (2)

Выражение (2) показывает, что качество преобразования входного напряжения в выходной ток существенным образом зависит от дифференциального сопротивления эмиттера транзистора, которое, в свою очередь, зависит от тока эмиттера, а следовательно, от входного напряжения. Таким образом, простейший ПНТ обладает двумя существенными недостатками:

Нелинейностью крутизны преобразования;

Отсутствие возможности осуществлять преобразование двухполярных сигналов.

2. ПНТ на основе дифференциальных каскадов

Обеспечить преобразование двухполярных сигналов можно с помощью ПНТ на основе дифференциального каскада с последовательной отрицательной обратной связью по току в эмиттерной цепи (рис. 2а).


Рис. 2. Преобразователь напряжение-ток а) и его проходная характеристика б)

Для схемы ПНТ (рис. 2а), воспользовавшись вторым правилом Кирхгофа, можно записать следующее уравнение для узловых потенциалов:

, (3)

где jT – температурный потенциал;

IХ – приращение тока через резистор R1 при воздействии входного напряжения UX.

С учётом того, что разность напряжений база-эмиттер можно представить как:

,

проходная характеристика такого звена (рис. 2б) может быть представлена следующим образом:

. (4)

Очевидно, что нелинейная составляющая в проходной характеристике определяется первым слагаемым в выражении (4).

Достаточно удобным способом оценки погрешности такого преобразователя, обусловленной нелинейностью, может служить нахождение отклонения реальной функции IХ /I0 (кривая 2 на рис. 2б) от её линейного приближения (кривая 1 на рис. 1б). Отметим, что кривая 2 (рис. 2б) представляет собой разность выходных токов коллекторов транзисторов дифференциальной пары.

Отклонение от линейности можно представить следующим образом:

, (5)

где SX=dIX /dUX – крутизна прямой передачи, определяемая из выражения (4);

dIX – абсолютное отклонение тока;

S0 =I0 /U0 – крутизна прямой передачи при линейном приближении;

I0 – максимальный выходной ток преобразователя при подаче на вход максимального напряжения U0.

Отметим, что SX(0) = S0, поэтому:

; (6) , (7)

где rE = jT/I0 – дифференциальное выходное сопротивление транзисторов VT1, VT2 со стороны эмиттера при начальном токе I0; X=IX/I0.

Подставляя (6) и (7) в (8), получаем:


, (8)

поскольку при g << 1 можно положить IX/I0 »UX/U0.

Формула (5) справедлива при относительно малых погрешностях преобразования – меньше 2-3 %. В этом случае при моделировании относительное отклонение от линейности можно представить как:

преобразователь ток напряжение

, (8а)

где SМАКС – максимальное значение крутизны на участке ±U0.

Из (8) следует, что приемлемых уровней погрешности (меньше 0,1 %) можно достичь только при выполнении условий: R1/2rE > 500 и относительном изменении тока X<0,75. Для ПНТ, работающих при питающих напряжениях ±15 В, эти условия могут быть легко реализованы. Для низковольтных схем (при их питании от напряжений меньше ±5 В) выполнение этих условий приведёт к резкому снижению крутизны преобразования входного напряжения в выходной ток, повышению уровня шумов и т.д.

Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера.

3. Повышение линейности ПНТ

Каким же образом можно уменьшить влияние дифференциального сопротивления эмиттера на работу подобного ПНТ?

Одним из способов снижения влияния дифференциального сопротивления эмиттеров транзисторов служит введение отрицательной обратной связи.

Упрощённая принципиальная схема ПНТ с операционными усилителями в цепи обратной связи приведена на рисунке 3.

Рис. 3. Упрощённая схема ПНТ с операционными усилителями

В этой схемотехнической конфигурации повышение линейности достигается за счёт того, что разность напряжений между входами операционного усилителя имеет достаточно малое значение, которое практически не меняется, значение дифференциального сопротивления эмиттера делится в петлевое усиление раз, что можно описать выражением:

, (9)

где К – коэффициент усиления по напряжению операционного усилителя.

Из (9) можно получить выражение для крутизны преобразования входного напряжения в ток:

, (10)

то есть влияние нелинейной составляющей ослабляется в петлевое усиление раз.

С точки зрения линейности, такая схема обладает наилучшей линейностью преобразования напряжения в ток (при достаточно большом коэффициенте усиления операционного усилителя), практически не требует настройки, однако достаточно сложна и обладает полосой пропускания, определяемой операционным усилителем.

На рисунке 4 приведён достаточно простой вариант реализации такой схемы при интегральном исполнении, однако, как видно из рисунка, он весьма громоздок, причём на рисунке отсутствуют реальные источники тока.


Рис. 4. Схема ПНТ с линеаризацией крутизны преобразования за счёт ООС

В связи с вышеизложенным схему ПНТ (рис. 4) целесообразно использовать только при интегральном исполнении. Кроме того, следует помнить, что частотные свойства такого преобразователя будут не очень хорошими по сравнению с ПНТ на одиночном дифференциальном каскаде.

Другой способ устранения нелинейности преобразования демонстрируется схемой ПНТ, представленной на рисунке 5. Этот способ компенсации нелинейности получил достаточно широкое распространение . Суть его заключается в следующем: тем или иным способом формируется компенсирующий ток, ослабляющий влияние изменения rE дифференциального каскада при изменении тока эмиттера.

Работает схема ПНИ (рис. 5) следующим образом. Транзисторы VT1 и VT6, образующие дифференциальный каскад, с помощью резистора R1 осуществляют преобразование входного напряжения в выходной ток. Транзисторы VT2 и VT5 включены по схеме с общей базой и передают токи коллекторов транзисторов VT1 и VT6 на выход с коэффициентом передачи α » 1. Одновременно с этим при изменении токов эмиттеров транзисторов VT2 и VT5 меняются и их напряжения база-эмиттер. В этом случае меняется и разность напряжений база-эмиттер транзисторов VT2 и VT5, причём в зависимости от знака приращения входного напряжения UX разность напряжений база-эмиттер транзисторов VT2 и VT5 также меняет знак. Вспомогательный дифференциальный каскад на транзисторах VT3 и VT4 с помощью резистора RK преобразует напряжение, пропорциональное разности баз-эмиттер транзисторов VT2 и VT5, в ток, который перекрёстным образом отправляется на токовые выходы ПНТ. Поскольку в базовой схеме ПНТ на транзисторах VT1 и VT6 присутствует составляющая, обусловленная DUБЭ1,6 этих транзисторов, то при условии, что транзисторы VT2 и VT5 в точности идентичны транзисторам VT1 и VT6, а токи источников опорного тока одинаковы, выбором сопротивления резистора RK можно скомпенсировать влияние DUБЭ1,6.

Входные и выходные каскады большинства электронных устройств являются источниками или приемниками напряжения. Однако в целом ряде случаев предпочтение отдается токовым сигналам. Токовые сигналы используются в длинных линиях связи распределенных систем управления технологическими процессами, поскольку этот способ обеспечивает хорошую защиту от помех, а сопротивления кабеля и контактных соединений практически не влияют на качество передачи сигнала. С токовым входным сигналом приходится иметь дело, например, в фототранзисторной схеме для измерения освещенности, при измерении тока, потребляемого нагрузкой, и т.д. Токовыми нагрузками являются широко используемые стрелочные измерительные приборы магнитоэлектрической системы.

Преобразователи тока в напряжение (ПТН) и напряжения в ток (ПНТ) используются в различных электронных устройствах и системах, в частности, для согласования каскадов, работающих с потенциальными и токовыми сигналами.

Для измерения малых токов с успехом может использоваться схема, рис. 2.24. Нижняя граница 1Вх составляет доли пикоампера. Согласно правилам 1 и 2 весь входной ток протекает через Roc и, следовательно,

Рис. 2.24. ПТН для малых токов

Коэффициент преобразования:

К _ ^вых _ ~ ^ос к

IBX i | r3kb + Rqc °ci

где К - коэффициент усиления по напряжению разомкнутого ОУ;

R-экв - эквивалентное сопротивление между входом (-) и землей, включающее в себя сопротивление источника тока и дифференциальное входное сопротивление ОУ. Входное сопротивление:

r _ Roc " ^экв вх Roc+(k + l).R31CB-

Учитывая, что обычно K-Rokb^Roo можно записать

вх ~1 + К* Выходное напряжение смещения:

^см.вых ~ ^сдв + ^см^ос »

где иСдв ~ входное напряжение сдвига; 1см - входной ток смещения.

Минимальное значение измеряемого тока определяется Uceb, 1см и их дрейфами. Поэтому с целью улучшения метрологических характеристик ПТН рекомендуется следующее:

1. При входных токах менее 1 мкА желательно использовать ОУ с полевыми входными транзисторами, имеющими очень малые входные токи.

Необходимо обеспечивать выполнение условия r3kb>>Roc> так как ТЛсдв усиливается схемой в -Roc/R-экв раз*

Погрешность, обусловленную 1см» можно значительно уменьшить, заземлив вход (+) не непосредственно, а через резистор, равный Roc-

Дрейф 11сдв и 1СМ вызывается изменением температуры. Поэтому целесообразно принятие мер по уменьшению нагрева ОУ в схеме ПТН.

В схеме ПТН лучше использовать прецизионные высокостабильные резисторы.

Преобразователи напряжения в ток. В ряде случаев возникает необходимость управлять током нагрузки при помощи входного напряжения. При этом изменение напряжения на нагрузке и колебания ее сопротивления не должны нарушать однозначности зависимости Ih=F(Ubx).

Простейшие ПНТ для незаземленной (плавающей) нагрузки приведены на рис. 2.25.


Согласно правилам 1 и 2 IH=~EBX/RBX для схемы (рис. 2.25,а) и *н -^вх/^вх ~~ Рис- 2.25,6. Входное сопротивление для инвертирующего преобразователя равно RBx> для неинвертирующего - Rbx.-синф» где Rbx-.синф ~ входное сопротивление ОУ для синфазного сигнала.

Максимальный выходной ток ограничивается максимальным выходным напряжением ОУ (напряжением питания) и сопротивлением нагрузки RH. Для схемы рис. 2.25,а н, для схемы

рис. 2.25,6 1выхмах =uhac/(rbx +&н)> где Uhac - выходное напряжение ОУ в режиме насыщения.

Увеличение тока нагрузки может Рис 2.26. ПНТ с увеличенным током быть достигнуто применением тран- нагрузки


зистора, рис. 2.26. Благодаря способности транзистора усиливать ток, 1н может быть в р раз больше максимального выходного тока ОУ (1Н = р!вых)> гп-е Р ~ коэффициент передачи тока транзистора.

Источник тока (рис. 2.27) позволяет вести управление разностью напряжений UBXi -UBX2. Согласно правилу 1 потенциал точки А равен UBxb а потенциал точки Б - UBx2- Таким образом, через резистор R протекает ток, равный (UBX1-UBX2)/R. В соответствии с правилом 2 весь этот ток протекает через нагрузку, поэтому

="j^~(^bxi - ^вхг)-

В рассмотренных схемах ПНТ нагрузка является плавающей (неза-земленной). Однако в ряде случаев требуется, чтобы один полюс нагрузки был заземлен. Две такие схемы для плавающих источников входного сигнала представлены на рис. 2.28. Согласно правилу 1 напряжение на резисторе Ri равно Ubx- Ток нагрузки равен Ubx^R-i-

ПНТ, рис. 2.29, работает на заземленную нагрузку и с заземленным источником входного сигнала.

Рассмотрим схему рис. 2.29,а. Выходное напряжение делится пополам между верхними по схеме резисторами R. Согласно правилу 1 потенциалы обоих входов ОУ равны ивых/2. Следовательно, напряжение на нагрузке также равно иВЫх/2. Ток нагрузки равен:

т _Т 4- т - ~ UH , ^вых ~~ Ан ~ Авх аос _ £ £

ционален управляющему напряже- ~v у п~ <~-" БЬК

нию Еь Все четыре резистора схемы должны быть согласованы (допуск 0,5... 1\%).

Аналогичную зависимость от Е2 имеет ток нагрузки в схеме рис.

2.29,6. Учитывая, что полярность ивых противоположна Е2, напряжение на каждом из верхних по схеме резисторах равно UR = (Е2 + UBbIX)/2, рис. 2.30. Согласно правилу 1

U н = U о - Е 2 = IiIHsbl - Е -UfiHLZll.

Следовательно, иВых=2ин+Е2. Ток нагрузки (рис. 2.29,6) равен:

1н - *ос ^вх

^ r _ (Е2 + UBbIX) т _ Uh _ (^вых Е2)

R" 2R »аток1вх-к- 2R

Окончатель-

ное выражение для тока нагрузки имеет следующий вид:

J _ Е2 + UfiblX Цвых ~ ^2 _ ^2

При подаче двух управляющих напряжений Е{ и Е2 одновременно IH = (Ej - E2)/R, т.е. источник тока управляется дифференциальным сигналом.

Ещё одна схема ПНТ с заземленной нагрузкой и с фиксированным значением выходного тока представлена на рис. 2.31.

Согласно правилу 1 напряжение на резисторе RcT равно напряжению стабилизации стабилитрона VD Uct-Эмиттерный ток транзистора VT 1Э = UCT/RCT . Учитывая, что для транзистора VT 1к~1э> ток нагрузки равен IH = UCT/RCT. Благодаря применению транзистора ток нагрузки может быть в р раз больше максимального выходного тока ОУ 1вых мах, где (3 - коэффициент передачи тока транзистора. Необходимым условием работы источника тока является выполнение неравенства Uh< Un - Uct - икэ нас» где и«;э нас - напряжение между коллектором и эмиттером транзистора VT в режиме насыщения.

Рассмотренная схема не является ПНТ в «чистом виде», поскольку выходной ток 1н задается либо изменением напряжения стабилизации Uct (сменой стабилитрона), либо изменением сопротивления резистора Rcr-

Шунты.

Шунт является простейшим измерительным преобразователем тока в напряжении. Он предназначен для расширения пределов измерения по току. При этом большую часть измеряемого тока пропускают через шунт, а меньшую - через измерительный механизм прибора. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.

Шунт представляет собой четырёхзажимный резистор. Два входных (силовых) зажима, через которые шунт включается в измеряемую цепь, называются токовыми, а два других, с которых снимается напряжение U, подводимое к измерительному механизму – потенциальными – рис.3.1.

I u И М

Рис. 3.1. Схема включения шунта.

Шунт характеризуется номинальным значением I ном и номинальным значением выходного напряжения U ном . Их отношения определяет номинальное сопротивление шунта:

R ш =U ном /I ном.

В измерительный механизм прибора отбирается часть измеряемого токаI :

I u = I R ш / (R ш + R u)

где R u – сопротивление измерительного механизма. Если необходимо, чтобы ток I u был вn раз меньше тока I , то сопротивление шунта должно быть:

R ш = R u / (n-1)

где n = I /I u - коэффициент шунтирования.

Шунты изготавливаются из манганина, сопротивление которого незначительно меняется от температуры. Шунты могут быть встроенные в прибор (при токах до 30 А) или наружные. Наружные шунты изготавливаются калиброванными, рассчитанными на определённые токи и имеющие одно из стандартных значений выходного напряжения: 10; 15; 30; 50; 75; 100; 150 и 300 мВ. Серийные шунты выпускаются для токов до 5000А. Классы точности серийных шунтов от 0,02 до 0,5.

Для многопредельных магнитоэлектрических приборов

Чувствительность измерительного преобразователя – это отношение изменения выходного сигнала к вызвавшему его изменению входного сигнала. Отношение S=ΔY/ΔX есть средняя чувствительность преобразователя на интервале ΔХ, а предел, к которому стремится это отношение при ΔХ→ 0, есть чувствительность преобразователя в точке Х:



S ═ lim S cp ═ -- .

ΔX→0 dX

Если Y и Х величины однородные, то чувствительность величина безразмерная. Различают абсолютную и относительную чувствительности преобразователя. Абсолютная чувствительность – это S=dY/dX, а относительная – S 0 =(dY/Y)/(dX/X). Например, чувствительность тензо-метрического преобразователя определяется как отношение относительного изменения электрического сопротивления ΔR/R к относительной деформации Δl/l.

Если функция преобразования линейна, то S - соnst и не зависит от Х. Например, если у=ах+ b, то S=а.

Если функция преобразования нелинейна, то S≠S cp и зависит от Х. Например, если у=ах 2 +b, то а=2ах.

Порог реагирования – это минимальное изменение входной величины, вызывающее уверенно различимое приращение выходной величины преобразователя на фоне шумов, смещения нуля, гистерезиса характеристики и прочих мешающих факторов.

Входное и выходное сопротивления определяют степень согласования преобразователя с источником сигнала и с нагрузкой. Так, если преобразуемый сигнал напряжение, то Z вх должно быть максимальным, а если ток – то минимальным. В общем виде входное сопротивление должно быть таким, чтобы минимизировать мощность, потребляемую от источника сигнала.

Быстродействие характеризует способность быстро реагировать на

изменение входного сигнала. В общем виде динамические свойства преобразователя характеризуются дифференциальным уравнением, связывающим выходную и входную величины. Решение этого уравнения при известном х(t) дает значение у(t). Порядок уравнения и его коэффициенты определяются структурой и параметрами преобразователи. На практике такую методику в прямом виде практически не используют в связи со сложностью решения дифференциальных уравнений высоких порядков.

Чаще для описания динамических свойств преобразователей используют характеристические функции, которые можно получить экспериментально, подавая на вход специальный тестовый сигнал, например, скачкообразный или гармонический. Реакция преобразователи на скачкообразное входное воздействие единичной амплитуды называется переходной функцией преобразователя h(t). Очень часто сложный преобразователь при анализе динамических процессов разбивают на простейшие динамические звенья. Переходные функции основных

не зависит от температуры. Температурный коэффициент прибора с дополнительным сопротивлением меньше температурного коэффициента измерительного механизма в R u / (R u + R д) раз.

В многопредельных приборах добавочные резисторы изготавливаются секционными – рис. 3.3.

В радиотехнике часто возникает необходимость в преобразователях. Многие источники сигнала имеют токовый выход. К таким источникам относятся ЦАПы, фоторезисторы, фототранзисторы и др… Для последующих манипуляций с сигналом необходимо преобразовывать его в напряжение. Рассмотрим проверенный временем преобразователь тока в напряжение на ОУ с разными источниками сигнала.

Преобразователь тока в напряжение (или сокращенно I-U преобразователь) — это схемное решение, позволяющее преобразовывать выходной токовый сигнал источника в напряжение.

Так же его называют усилитель — преобразователь сопротивления . Такое название в технической литературе было дано за то, что простейший преобразователь тока в напряжение — это резистор.

Вся магия преобразования происходит по закону дедушки Ома. Ток i вх протекая через резистор R вызывает на нем падение напряжение U вых . Величина этого напряжения прямо пропорциональна произведению сопротивления резистора и входного тока. Пожалуй формулой все звучит даже проще:

U вых = R × i вх

Основной недостаток использования одного резистора состоит в его ненулевом сопротивлении. Это обстоятельство становится серьезной проблемой, когда источник не в состоянии обеспечить необходимый уровень напряжения на резисторе. Результатом буду просадки напряжения на выходе.

Еще больше сопротивление сказывается на работе преобразователя, если у источника тока малый выходной рабочий диапазон. К таким источникам относится, например, фотодиод. Его выходной ток составляет единицы мкА.

В случае же ЦАПа , особенно высококачественного, использование резистора для преобразования предпочтительнее. Почему и зачем читайте в статье . Это обусловлено некоторыми фазовыми проблемами схем, которые будут рассмотрены. К счастью для нас, источникам вроде фотодиода фазовые искажения безразличны.

Схема преобразователя ток-напряжение на ОУ

Схема преобразователя тока в напряжение, совсем не нова, но проверенна и безотказна. В общем виде она выглядит следующим образом:


Ток сигнала i вх втекает в инвертирующий вход. Поскольку входной ток идеального ОУ равен нулю, то весь входящий ток поступает на резистор R цепи обратной связи. Этот ток создает на резисторе падение напряжения по закону все того же Ома.

Как результат ОУ будет стараться поддерживать на сопротивлении нагрузки R Н напряжение, пропорциональное величине входного тока. Коэффициент усиления схемы в, таком случае, имеет размерность сопротивления. Что еще раз объясняет советское название усилитель-преобразователь сопротивления:

K = U вых ÷ i вх = R

Преобразователь для заземленного источника

Рассмотрим несколько схем преобразователя тока в напряжение на ОУ, подходящие для любого случая. Начнем со схемы преобразователя для фотодиода.


Направление протекания тока показано стрелкой, и для данного случая величина выходного напряжения составит:

U вых = − i вх × R

Знак минус появляется из-за выбранного направления протекания тока фотодиода. (Указано стрелкой на схеме выше)

На этой схеме так же показан дополнительный резистор в 1 МОм, с неинвертирующего(+ ) входа ОУ на землю. Схема останется работоспособной и без этого резистора, а вход операционного усилителя в таком случае заземляется напрямую.

Однако имея резистор в 1 МОм в цепи обратной связи, на каждый 1 мкА входного тока на выходе будет создан 1 Вольт напряжения. При таком коэффициенте усиления (миллион раз ) резистор желателен из-за неидеальности операционных усилителей.

Преобразователь тока в напряжение используют и с источниками сигнала, подключенными к шине питания. Такая схема часто применяется с элементами вроде фототранзисторов. Фототранзистор потребляет (пропускает ) ток, под действием внешнего источника света, положительной шины питания.


Преобразователь тока в напряжение для незаземленного источника

Такой преобразователь отличается наличием второго токочувствительного резистора в цепи прохождения сигнального тока, который заземлен. Схема симметричного преобразователя ток-напряжение это подобие дифференциального усилителя.


В следствии падения напряжения так же и на заземленном резисторе, потенциал входа ОУ падает ниже потенциала земли, а на выходе устанавливается напряжение:

U вых = −2 × i вх × R

Симметричный преобразователь тока в напряжение — пример операционной схемы, которой необходим незаземленный (плавающий ) источник сигнала. Таким источником может послужить все тот же фотодиод. При этом фотодиод может быть вынесен за пределы платы. Для еще большей минимизации помех, желательно использовать экранированный кабель, экран которого должен быть соединен с землей.

Заключение

Материал подготовлен исключительно для сайта

Просмотров