Балансировка вращающихся деталей при ремонте машин. Статическая балансировка вращающихся деталей Контрольные вопросы к главе X

После сборки вращающейся сборочной единицы, в которую входят сбалансированные детали (например: валы, насадные шестерни, муфты и др.) и другие детали (шпонки, штифты, стопорные винты и др.), возникает необходимость в повторной их балансировке, так как смещение одной из деталей, даже в пределах зазоров, предусмотренных чертежом, вызывает значительную неуравновешенность.

Несовпадение центра тяжести детали с осью вращения принято называть статической неуравновешенностью, а неравенство нулю центробежных моментов инерции – динамической неуравновешенностью.

Статическая неуравновешенность легко обнаруживается при установке детали опорными шейками или на оправках на горизонтальные параллели (ножи, призмы, валики) или ролики, а динамическая – лишь при вращении детали. В связи с этим балансировка бывает статическая и динамическая.

Статическая балансировка. Существует несколько методов выполнения статической балансировки. Наиболее часто встречаются в станкостроении балансировки на призмах и на дисках. Ножи, призмы и ролики должны быть калеными и шлифованными и перед балансировкой выверены на горизонтальность.

При балансировке на горизонтальных параллелях (рис. 1) допускаемые овальность и конусность шеек оправки не должны превышать 0,01-0,015 мм, а диаметры их должны быть одинаковыми.

Рис. 1. а – на горизонтальных параллелях (1 – центр тяжести детали; 2 – корректирующий груз); б – на дисках (1 – деталь; 2 – корректирующий груз)

Для уменьшения коэффициента трения параллели и шейки оправки рекомендуется подвергать закалке и тщательно шлифовать. Рабочую длину параллелей можно определять по формуле:

где d – диаметр шейки оправки.

Ширина рабочей поверхности параллелей (ленточки) равна (см):

где G – усилие, действующее на параллель, в кГ; Е – модуль упругости материала оправки и параллелей, в кГ/см 2 ; σ – допускаемое сжимающее напряжение в местах контакта шейки и параллели, в кГ/см 2 (для закаленных поверхностей σ=2 10 4 ÷ 3 10 4 кГ/см 2).

Величина d в см назначается из конструктивных соображений с учетом удобства установки балансируемой детали на оправку.

Дисбаланс определяется пробным прикреплением корректирующих грузов на поверхности балансируемой детали. Устраняется дисбаланс удалением эквивалентного количества материала с диаметрально противоположной стороны или установкой и закреплением соответствующих противовесов (корректирующих грузов).

Статическая балансировка шкива может быть выполнена следующим образом. На ободе шкива предварительно наносят мелом черту и сообщают ему вращение. Вращение шкива повторяют 3-4 раза. Если меловая черта будет останавливаться в разных положениях, то это будет указывать на то, что шкив сбалансирован правильно. Если меловая черта каждый раз будет останавливаться в одном положении, то это значит, что часть шкива, находящаяся внизу, тяжелее противоположной. Чтобы устранить это, уменьшают массу тяжелой части высверливанием отверстий или увеличивают массу противоположной части обода шкива, высверлив отверстия, а затем заливают их свинцом.

Чувствительность балансировки деталей весом до 10 т на горизонтальных параллелях (рис. 1, а):

где F – чувствительность метода в Г см; f – коэффициент трения качения (f=0,001 ÷ 0,005 см); G – вес детали или сборочной единицы в кг.

Чувствительность балансировки деталей весом до 10 т на дисках (рис. 1, б):

где F – чувствительность метода в Г см; f – коэффициент трения качения (f=0,001 ÷ 0,005 см); G – вес детали или сборочной единицы в кг;  – коэффициент трения качения в подшипниках дисков; r – радиус цапфы дисков в см; d – диаметр оправки в см; D – диаметр дисков в см; α – угол между осью оправки и осями дисков.

Точность балансировки на дисках больше, чем на горизонтальных призмах. Статическую балансировку чаще всего применяют для деталей типа дисков.

Балансировка деталей и сборочных единиц может быть выполнена на балансировочных весах в резонансном режиме колеблющейся системы, которая позволяет повысить точность балансировки.

Балансировку деталей весом до 100 кг на балансировочных весах выполняют следующим образом (рис. 2): испытываемую конструкцию 1 уравновешивают грузами 3 и разгоняют вращающуюся часть 1 конструкции до частоты вращения, превышающей частоту колебаний системы. После разгона электродвигатель отсоединяют от испытываемой конструкции, подвижная часть которой продолжает свободно вращаться, постепенно снижая скорость. Это исключает влияние возмущений от двигателя привода на колеблющуюся систему. Амплитуда смещения контрольной точки измеряют прибором 2 в момент совпадения частоты вращения шпинделя с собственной частотой колеблющейся системы, т. е. при резонансе, где амплитуда достигает наибольшего значения. Величина остаточной неуравновешенности при данном методе измерения не должна превышать 1,5-2 Г см.

Рис. 2.

По ряду изделий в настоящее время на основании опыта уже установились нормы допустимого смещения центра тяжести вращающихся деталей (табл. 1).

Таблица 1. Допустимая величина смещения центра тяжести

Группа деталей Наименование Смещение центра

тяжести, мкм

Группа деталей Наименование Смещение центра

тяжести, мкм

А Круги, роторы, валы и шкивы точных

шлифовальных станков

0,2-1,0 В Жесткие небольшие роторы

электродвигателей, генераторы

2-10
Б Высокооборотные электродвигатели,

приводы шлифовальных станков

0,5-2,5 Г Нормальные электродвигатели, вентиляторы,

детали машин и станков, быстроходные приводы и т. д.

5-25

Чувствительность балансировки деталей весом до 100 кг на балансировочных весах (рис. 2): F=20 ÷ 30 Г см.

Величина дисбаланса:

где ω – разность показаний прибора 2.

Динамическая балансировка деталей и сборочных единиц применяется для более точного определения дисбаланса, возникающего при вращении под действием центробежных сил. Для проведения динамической балансировки деталей и комплектов типа тел вращения применяют балансировочные станки.

Детали и комплекты типа муфт, зубчатых колес, шкивов балансируют на оправках. Оправку с деталью или сборочной единицей для балансировки устанавливают на балансировочном станке и соединяют со шпинделем станка.

Величина дисбаланса и место его расположения определяются приборами, установленными на станке. Дисбаланс устраняют обычно сверлением отверстия в детали или направлением металла на противоположной от места дисбаланса стороне детали.

Требуемая техническими условиями точность балансировки зависит от конструкции и назначения деталей и узлов, скорости их вращения, допустимых вибраций машины, необходимой долговечности опор.

Статическая балансировка может уравновешивать деталь относительно ее оси вращения, но не может устранить действие сил, стремящихся повернуть деталь вдоль продольной ее оси.

Динамическая балансировка устраняет оба вида неуравновешенности. Динамической балансировке подвергают быстроходные детали со значительным отношением длины к диаметру (роторы турбин, генераторов, электродвигателей, быстровращающиеся шпиндели станков, коленчатые валы автомобильных и авиационных двигателей и т. д.).

Динамическую балансировку производят на специальных станках высококвалифицированные рабочие. При динамической балансировке определяют величину и положение массы, которые нужно приложить к детали или отнять от нее, чтобы деталь оказалась уравновешенной статически и динамически.

Центробежные силы и моменты инерции, вызванные вращением неуравновешенной детали, создают колебательные движения из-за упругой податливости опор. Причем колебания их пропорциональны величине неуравновешенных центробежных сил, действующих на опоры. На этом принципе основана балансировка деталей и сборочных единиц машин.

Динамическая балансировка, выполняемая на современных автоматизированных балансировочных станках, в интервале 1-2 мин выдает данные: глубину и диаметр сверления, массу грузов, размеры контргрузов и места, где необходимо закрепить и снять грузы, а также амплитуду колебаний опор.

Динамической балансировке подвергаются детали и узлы длиной больше диаметра (коленчатые валы, шпиндели, роторы лопаточных машин и т. п.). Динамическая неуравновешенность, возникающая при вращении детали вследствие образования пары центробежных сил Р (рис. 3, а), может быть устранена приложением корректирующего момента от сил Р 1. Выбор плоскостей коррекции определяется конструкцией детали и удобством удаления излишков металла. Наиболее общий случай неуравновешенности детали, встречающийся на практике, показан на рис. 3, б.

Рис. 3. Принципиальная схема динамической балансировки деталей: а – динамическая неуравновешенность детали; Р – центробежные силы от неуравновешенных масс m, расположенных на плече r; Pt – центробежные силы от корректирующих грузов; б – статическая и динамическая неуравновешенность детали; Р’ – центробежная сила от массы m’, раскладываемая на силы Р и Р”, вызывающие статическую неуравновешенность

Выявление неуравновешенности производится на балансировочных машинах. В условиях индивидуального производства динамическую балансировку выполняют при помощи простых средств, к числу которых можно отнести, например, устройство для установки опор уравновешиваемой детали на упругие балки или на упругие (резиновые) подкладки.

Деталь приводят во вращение до скорости, превышающей условия резонанса.

Отключают привод (например, сбросом ремня) и замеряют амплитуду максимальных колебаний одной из опор. Прикреплением пробного груза к детали добиваются прекращения колебания этой опоры. Аналогичную процедуру выполняют в отношении другой опоры. Балансировка заканчивается по прекращении колебаний опор.

с упругими опорами, применяемой для деталей и узлов весом до 100 т (роторы мощных турбин) – на рис. 4.

Рис. 4. 1 – балансируемый объект; 2 – электромагнитная муфта; 3 – электродвигатель; 4 – подшипники; 5 – поддерживающие упругие стойки (рессоры); 6 – упоры, поочередно запирающие подшипники; 7 – механический рычажный индикатор для определения плоскости дисбаланса по меткам 8, вычерчиваемым острием индикатора на окрашенной колеблющейся шейке объекта; 9 – компенсирующие пробные грузы, прикрепляемые к объекту

Балансировку ведут при поочередном закреплении опор. Угловое положение дисбаланса находят при помощи механических или электрических индикаторов. Величина дисбаланса в выбранных плоскостях коррекции определяется прикреплением пробных компенсирующих грузов. Чувствительность зависит от веса и размеров объекта.

Балансировка на машинах рамного типа с регулируемыми компенсаторами дисбаланса применяется преимущественно для деталей и сборок малых и средних размеров весом до 100 кг.

Уравновешивание дисбаланса осуществляется вручную и механически.

На рис. 5 приведена схема балансировочной машины с ручным перемещением компенсирующего груза 3 на шпинделе станка.

Рис. 5. 1 – рама; 2 – балансируемая деталь, сборка; 3 – компенсатор дисбаланса

Груз 3 перемещают в радиальном и окружном направлениях и вручную корректируют его вес. Так определяют эквивалентное количество материала для удаления с детали. Дисбаланс определяют только в плоскости коррекции 1–1. Поэтому для определения дисбаланса детали в другой плоскости 2–2 необходимо ее переустановить с поворотом на 180° для определения величины и местоположения компенсатора в этой плоскости. Машина требует предварительной настройки по эталонной детали; колебания рамы вокруг горизонтальной оси отмечаются механическим измерителем амплитуды; величина неуравновешенных моментов в выбранных плоскостях коррекции определяется с точностью 10 -15 Г см 2 .

Как производится балансировка колёс (статическая, динамическая)

Шина представляет собой сложное технологическое изделие, состоящее из большого числа разнородных элементов из разных составов резиновой смеси, а также стали, текстиля, синтетических материалов. Поэтому создать равномерное распределение материалов, а следовательно и массы задача сложная и это неизбежно приводит к появлению «тяжелых» мест шины в протекторной части, а также в боковине.

Кроме того, колесо в сборе может быть установлено с нарушением центровки относительно ступицы автомобиля, диск имеет отверстие под вентиль и сам вентиль имеет некоторую массу.

При вращении колеса на элемент массы участвующий в круговом движении действует центробежная сила, величина которой зависит от массы участка, расстояния от оси вращения, а также от линейной скорости вращения. Причем зависимость от скорости квадратичная. Именно эта сила и будет при вращении колеса создавать переменную по направлению результирующую силу, а также переменный по направлению вращающий момент на оси, что ведет к возникновению вибраций колеса, вибраций элементов рулевого управления и подвески. Это воздействие равносильно применению на автомобиле деформированного колеса. В результате, снижается безопасность движения, а также существенно ухудшает комфортность и в конечном счете приводит к разрушению элементов подвески и преждевременному износу шины.

Как же бороться с этим явлением? Ответ прост - необходимо компенсировать неоднородность массы, используя так называемые балансировочные грузики.

Различают статический и динамический дисбаланс.

Статический дисбаланс -- это неравномерное распределение масс по оси вращения. При статическом дисбалансе колесо бьет в вертикальной плоскости. Для устранения этого явления к колесу необходимо приложить компенсирующую силу равную по величине, но противоположную по направлению центробежной силе. Это достигается прикреплением дополнительного грузика в диаметрально противоположной точке нахождения неуравновешенной массы. Такой процесс называется статической балансировкой . Без проведения статической балансировки невозможна и другая процедура: сход-развал -- установка правильного угла наклона колеса, от которого зависит управляемость автомобиля.

Динамический дисбаланс -- это неравномерное распределение масс в плоскостях параллельных направлению движения. При динамическом дисбалансе на колесо действует пара сил противоположно направленных, создающих переменный момент - «расскачивая» колесо из стороны в сторону. Такая балансировка предотвращает раскачивание колеса из стороны в сторону -- основного явления при возникновении динамического дисбаланса. Процедура исправления дефектов производится при быстро вращающемся колесе. Она позволяет более точно установить и устранить все дефекты. После этого выполняют развал схождение.Динамическая балансировка проводится на специальных балансировочных стендах.

В основном при балансировке колеса имеет случай комбинированного дисбаланса , сочетающий статическую и динамическую составляющую.

Сейчас, скорости перемещения возросли, для высокоскоростных автомобилей необходима весьма точная балансировка, сделать которую возможно только на оборудовании высокого класса и квалифицированным персоналом. Кроме того, дополнительную коррекцию неравномерности масс элементов подвески, участвующих во вращении и неточности центровки колеса на ступице возможно осуществить на автомобиле при проведении финишной балансировки.

Балансировочный станок APOLLO

Функциональные особенности:

Высокая производительность и точность балансировки колес за счет применения прогрессивных технологий:

AutoALU, S-Drive, Direct3D

Автоматическое определение параметров диска

Автоматическое определение типа диска (технология AutoALU)

Точное прямое измерение геометрии ALU-дисков (технология Direct3D)

Интеллектуальное управление 3-фазным двигателем - поворот к месту установки груза (технология S-Drive)

Точная установка липких грузов электронной линейкой

SPLIT - установка липких грузов за спицами

Минимизация статического дисбаланса

Настройка предела 0

Счётчик отбалансированных колёс

Синтезатор речи

Защита от повышенного напряжения в сети (технология PowerGuard)

Высокоточный шпиндельный узел, диаметр вала 40 мм.

В случае отсутствия специальных стендов статическую балансировку колеса можно выполнять на ступице переднего колеса автомобиля. Для этого надо приподнять переднюю часть автомобиля домкратом, ослабить затяжку подшипников ступицы переднего колеса, расшплинтовав и отвернув на 90...120° регулировочную гайку. После этого следует устанавливать колесо в различные положения и отпускать. Если при этом колесо не удерживается в установленном положении, а проворачивается в ту или другую сторону и останавливается только в одном положении, значит оно имеет дисбаланс.


Рис. 123.

а -- крепление балансировочного грузика на ободе колеса, б --определение самой легкой части колеса, в -- начальное положение балансировочных грузиков, г -- окончательное положение балансировочных грузиков (при равновесии колеса)

Для балансировки колес необходимо:

снизить давление в шине до 20...30 кПа и снять с обода колеса балансировочные грузики (рис. 123, а);

медленно повернуть колесо против часовой стрелки и отпустить, когда оно остановится; нанести вертикальной меловой чертой метку I (рис. 123,б), определяющую верхнюю точку колеса;

повернуть толчком колесо по часовой стрелке и после его остановки также отметить верхнюю точку меловой вертикальной линией II, разделить кратчайшее расстояние между метками I и III пополам и нанести метку III-- это и будет самое легкое место колеса (рис. 123, б);

установить по обе стороны метки III малые балансировочные грузики (рис. 123, в) массой 30 г, которые своей пружиной подходят под борт покрышки и удерживаются на ободе;

толчком руки повернуть колесо. Если после его остановки грузики займут нижнее положение, их масса для балансировки колеса достаточна; если грузики займут верхнее положение, нужно поставить более тяжелые (40 г) и, вращая колесо, убедиться, что оно останавливается при нижнем положении грузиков;

отодвигая грузики на равные расстояния (А и А) от метки III (рис. 123, г), следует добиться равновесия колеса, когда оно после толчка рукой будет останавливаться в разных положениях (в зависимости от приложенного усилия);

накачать шину до нормального давления и приступить к балансировке следующего колеса. Передние колеса балансируются каждое на своей ступице, а задние -- на одной из ступиц передних колес.

Статической балансировкой называют совмещение центра тяжести детали с её геометрической осью вращения. Это достигают снятием металла с тяжёлой части детали, или добавлением его путём наплавки на её лёгкую часть.
Статической балансировке подвергают маховики, крылатки насосов, зубчатые колёса и шестерни зубчатых передач дизельных установок и т.д.
Вращение деталей с неуравновешенной массой приводит к появлению центробежной силы или пары сил, которые и вызывают вибрацию механизма при его работе. Центробежная сила возникает при условии, что центр тяжести детали не совпадает с её осью вращения.
Схема действия центробежной силы при смещении центра тяжести:

Неуравновешенная центробежная сила создаёт на подшипниках дополнительные нагрузки, величина которых может быть определена по формулам:


где Р1,Р2 — дополнительные нагрузки на подшипниках;
а, в — расстояние от плоскости действия силы С соответственно до левого и правого подшипников, мм;
l — расстояние между осями подшипников, мм.
Величину центробежной силы можно определить через массу детали и величину смещения центра тяжести детали относительно оси её вращения по формуле:


где G — масса детали, кг;
q — ускорение силы тяжести (9,81 м/с2);
w — угловая скорость (w = п на n / 30, где n — частота вращения, мин - 1);
r — расстояние от центра тяжести до оси вращения детали, м.
Например, центр тяжести «0» вращающегося диска массой 30 кг с частотой вращения 3000 мин - 1 смещён от центра оси на величину r = 1 мм. Тогда неуравновешенную центробежную силу получаем:

то есть нагрузка на ось в 10 раз превышает массу самой детали. Из этого следует, что даже незначительное смещение центра тяжести может вызвать большие дополнительные нагрузки на подшипники.
Статическую балансировку производят на специальных стендах. Основными деталями стенда являются ножи (призмы), валики или подшипники качения, на которых устанавливают балансируемую деталь на оправке. Ножи, валики или подшипники размещают в одной горизонтальной плоскости.
Статическую балансировку деталей, работающих при частоте вращения до 1000 мин - 1, производят в один этап, а деталей, работающих при большей частоте вращения, — в два этапа.
На первом этапе деталь уравновешивают до безразличного её состояния, то есть такого состояния, при котором деталь останавливается в любом положении. Это достигают путём определения положения тяжелой точки, а затем с противоположной стороны подбирают и крепят уравновешивающий груз. В качестве уравновешивающего груза используют кусок пластилина, замазки, мастики и т.д.
После уравновешивания детали на её лёгкой стороне взамен временного груза крепят постоянный груз, или с тяжёлой стороны снимают соответствующее количество металла, схема установки временного и постоянного грузов представлена на рисунке:
Схема установки временного (Р1) и постоянного (Р2) грузов:


Б — тяжёлая точка.
Иногда место установки уравновешивающего временного груза меняют, что сопровождается изменением радиуса его установки и, как следствие, изменением его массы. Величину массы постоянного уравновешивающего груза определяют из уравновешивания моментов:


где Р1 — масса временного груза;
Р2 — масса постоянного груза;
R, r — радиусы установки соответственно временного и постоянного грузов.
Для деталей с частотой вращения до 1000 мин - 1 балансировку на этом заканчивают.
Второй этап балансировки заключается в устранении остаточной неуравновешенности (дисбаланса), оставшейся за счёт инерции детали и наличия трения между оправкой и опорами. Для этого поверхность торца детали делят на шесть-восемь равных частей, нумеруя их.
Диаграмма статической балансировки детали:


а — разметка окружности торца детали и места установки грузов; б — развёртка окружности и кривая балансировки.
Затем деталь с временным грузом устанавливают так, чтобы точка 1 оказалась в горизонтальной плоскости. В этой точке крепят груз, увеличивая его массу до тех пор, пока деталь не выйдет из состояния равновесия (покоя) и не начнёт медленно вращаться. Груз снимают и взвешивают на весах.
В такой же последовательности выполняют работу и для остальных точек детали. Полученные значения массы грузов заносят в таблицу:
Значения массы грузов в точках их установки на детали (r ):


По данным таблицы строят кривую, которая при точном выполнении балансировки должна иметь форму синусоиды. На этой кривой находят точки максимума (А макс) и минимума (А мин).
Точке максимума кривой соответствует легкое место детали, а точке минимума — тяжёлое место детали.
Массу уравновешивающего груза (дисбаланса) определяют по формуле:


Статическая балансировка считается удовлетворительной, если:


где К — масса дисбаланса детали, г;
R — радиус установки временного груза, мм;
G — масса балансируемой детали, кг;
l ст — предельно допустимое смещение центра тяжести детали от оси её вращения, мкм.
Предельно допустимое смещение центра тяжести детали находят по диаграмме предельно допустимых смещений центра тяжести у деталей при статической балансировке.
Диаграмма предельно допустимых смещений центра тяжести деталей при статической балансировке:


1 — для колёс зубчатых редукторов, дисков гидромуфт, гребных винтов с турбоприводом; 2 — гребные винты дизельных установок, маховики, крылатки центробежных насосов и вентиляторов.
Если соблюдается условие уравнения, то процесс балансировки на этом заканчивается и груз дисбаланса на деталь не устанавливают. Если условие уравнения не соблюдается, то полученную массу грузика «К» устанавливают в точке А макс (радиус 2) или снимают в точке А мин (радиус 6).
Качество балансировки деталей проверяют при работе дизеля по его вибрации.

На чтение 6 мин.

Автолюбители исправно проходят техническое обслуживание своих автомобилей, меняют масла, фильтры и другие расходники. Однако зачастую многие забывают о такой процедуре, как балансировка колес. Владельцы одного комплекта дисков раз в сезон приезжают на смену резины с летней на зимнюю и наоборот. Обладатели летнего и зимнего варианта самостоятельно ставят колеса и годами ездят на неотбалансированной резине.
Различают два вида балансировки:

  • динамическая;
  • статическая.

Внимание! Не каждая фирма по шиномонтажу готова взяться за работу по статической балансировке из-за отсутствия необходимого оборудования. Качественные и профессиональные услуги вы можете получить .

Такой вид работ вам могут провести только на специальном и современном стенде. На большинстве новых автомобилей с завода устанавливается резина с широким профилем, которая чувствительно воспринимает динамический дисбаланс и требует дополнительной проверки на оборудовании.
При проведении работ специалист устанавливает колесо на рабочий станок, который делает несколько замеров и указывает место установки грузика. Такая процедура не займет у вас много времени, зато оградит от неприятных биений при прохождении затяжного поворота.


Любой балансировочный станок способен устранить статические биения колеса. Смысл заключается в поиске самой тяжелой точки и определении точки установки грузика.
Разные станки могут обслужить колеса от небольшого грузового и легкового автомобиля. Для установки больших колес используется специальный грузовой стенд и осевой адаптер.
При проведении статической балансировки ваше колесо раскручивается для определения центробежной нагрузки. Частота вращения зависит от настроек оборудования. Данная операция может выполняться работником сервиса до тех пор, пока колесо полностью не отбалансируется и прибор не покажет правильные значения.

Внимание! Перед проведением работ проследите за тем, чтобы оператор удалил все камни из протектора, очистил внутреннюю сторону диска от загрязнений и удалил старые грузики. Если вам проведут настройку баланса с камнями в протекторе, то все настройки собьются сразу после удаления камня на высокой скорости.

Перед установкой колеса на станок нужно правильно отмыть и очистить все загрязнения. Некоторые компании используют очистительную камеру, в которой подается пар под высоким давлением.

Нужна ли балансировка колес?


При производстве резины и автомобильных дисков невозможно точно угадать баланс и равномерно распределить вес. Даже в процессе покраски литых или металлических дисков краска на ободе ложится не равномерно и дает биение при динамических нагрузках.
Самое сильное влияние на распределение веса оказывает резина, ввиду удаленного расположения от центральной оси. Поэтому даже если вы купите новую резину и диски, то необходимо сделать балансировку колес.
Резина, установленная без балансировки, оказывает влияние на некоторые системы и детали автомобиля, например:

  • ступичные подшипники изнашиваются в несколько раз быстрее;
  • по кузову идет хорошо ощутимая вибрация на высоких скоростях;
  • долгий процесс эксплуатации с вибрацией выводит из строя шрус, рулевые тяги, шаровые, наконечники и сайлентблоки;
  • покрышка изнашивается намного быстрее;
  • рулевая рейка постоянно получает микроудары и быстрее придет в негодность.

В итоге копеечная экономия на ежегодную балансировку может привести к серьезным тратам при дорогостоящем ремонте ходовой части автомобиля. Последствия вибрации также могут оказывать негативное влияние на подушки двигателя и трансмиссии.

Как делают балансировку колес?


Работы проводятся на специальном оборудовании с помощью вспомогательных элементов и грузиков для балансировки колес.
Всего доступно несколько вариантов:

  • На оборудовании (требуется снятие колеса).
  • Финишная, при которой колесо остается на автомобиле.
  • Автоматическая (используется бисер или тонкий порошок).Самым распространенным и надежным вариантом является настройка баланса снятого колеса на специальном оборудовании.

Перед установкой на станок выполняются условия:

  • очистка покрышки и диска с помощью гидротурбины, пара или мойки высокого давления;
  • подкачка колеса до рабочего давления;
  • снятие центрального колпачка и установка адаптера.

Внимание! Зачастую мелкие сервисы по старинке очищают обод тонкой щеткой, не промывая трудные участки от скопившейся грязи. Такой подход не позволит правильно отбалансировать колесо, и вам придется делать повторный визит или ехать в другую фирму.

Балансировать колеса вы можете самостоятельно с помощью специальных гранул. Однако не каждый автовладелец хочет сыпать в каждую покрышку легкового автомобиля около 50-100 граммов порошка. К тому же сделать балансировку рабочего колеса обойдется намного дешевле классическим способом с применением грузиков. Поэтому автоматический метод балансировки с бисером чаще всего используется дальнобойщиками на грузовых авто.
Финишную балансировку колес можно сделать прямо на автомобиле. Машина устанавливается на специальное оборудование, которое раскручивает колесо до 90 километров в час, проверяя резину и диск на биение. Если с настройками все в порядке, то приспособление не потребует установки дополнительного грузика. Непосредственная проверка на автомобиле удобна тем, что вам не придется снимать колесо.
Оборудование для проведения балансировки
Лучшими станками для проведения балансировочных работ являются «Тринберг» и «Троммельберг». Мастера часто называют их «Тролинберг». Принципы работы каждого станка очень схожи, однако отличаются системные алгоритмы для определения точки установки грузика.

Важно! Невозможно сделать балансировку колеса на устаревшем оборудовании с изношенным валом и сбившимися системными настройками. Поэтому, если вы решили сделать балансировку в незнакомом сервисе, обязательно обратите внимание на чистоту рабочего места и внешний вид станка.

Можно ли самостоятельно отбалансировать колеса
Колеса без балансировки оказывают пагубное влияние на элементы подвески и снижают срок службы ступичных подшипников. Не все автовладельцы хотят раз в сезон оплачивать услуги балансировки передней и задней оси, поэтому часто задаются вопросом, можно сделать балансировку колес своими руками?
Наверняка вы не захотите самостоятельно создавать балансировочное оборудование, а покупка готовых вариантов стоит приличных денег. Для работы нужен не только станок, но и дополнительные компоненты:

  • помещение для проведения работ;
  • мощная электрическая точка для обеспечения питания;
  • твердая рука и наличие опыта;
  • свой комплект грузиков, которые могут самоклеяться.

Все необходимые компоненты требуют много времени и денежных вложений. Поэтому на начало зимнего или летнего сезона вам все же придется посетить станцию и обслужить колеса.

Грузики для балансировки колес


Различают несколько типов грузиков:

  1. Набивные.
  2. Самоклеящиеся.

Набивные состоят из свинца или металла. Каждая деталь оснащена специальным крепежом для надежного зацепления с ободом колеса. Установка осуществляется на внешнюю и внутреннюю сторону обода с помощью легкого постукивания молотком. Такие детали имеют разные показатели по весу, а также отличаются по форме для штампованных и литых дисков.

Самоклеющиеся грузики


Балансировочные ленты с адгезивной подложкой изготавливаются из свинца. Чаше всего вся лента весит 60 граммов и состоит из отдельных элементов по 5 и 10 граммов. При необходимости нужный вес очень легко отделить.
Данная деталь приклеивается с внутренней стороны литого диска с помощью специального клейкого состава.
Внимание! Перед приклеиванием нужно тщательно обезжирить поверхность. В противном случае грузик отвалится при высоких скоростях.

Главным источником вибрации агрегатов является неуравновешенность роторов , которая всегда имеет место, из-за того, что ось вращения и ось инерции, проходящая через центр масс, не совпадают. Неуравновешенность роторов подразделяют на следующие три вида.

Статическая неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции параллельны (см. рис.1).

Рис.1

Моментная неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции пересекаются в центре масс ротора (см. рис.2).

Рис.2

Динамическая неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции пересекаются не в центре масс или перекрещиваются (см. рис.3). Она состоит из статической и моментной неуравновешенности.

Примечание: Здесь и далее выделены курсивом термины и определения, установленные ГОСТом 19534 – 74. Балансировка вращающихся тел. Термины.

Рис.3


Частным случаем динамической неуравновешенности является квазистатическая неуравновешенность, при которой ось ротора и его главная центральная ось пересекаются не в центре масс ротора.

Вызываемая неуравновешенностью центробежная сила определяется по формуле:

Fцн = P/g w 2 r = P/g (?n/30) 2 r, (1)
где w = 2?f = ?n/30– угловая скорость,
f – число оборотов ротора в секунду,
n – число оборотов в минуту,
P – вес ротора, q = 9,81м/сек2 – ускорение свободного падения,
r – радиус неуравновешенной массы или модуль эксцентриситета.

На высоких оборотах неуравновешенные массы могут развить центробежные силы до недопустимых значений, которые приведут к разрушению машины. Для большинства машин достижение неуравновешенной центробежной силой значения ок. 30% веса ротора является предельно допустимой величиной.

Произведение неуравновешенной массы на её эксцентриситет называют дисбалансом. Дисбаланс - величина векторная. Чаще используется термин "значение дисбаланса", которое равно произведению неуравновешенной массы на модуль её эксцентриситета.

Дисбалансы роторов в процессе эксплуатации могут быть вызваны износом рабочих частей, изменением посадки дисков, ослаблением крепления элементов входящих в состав роторов, деформацией и другими факторами, приводящими к смещению масс относительно оси вращения.

Значение дисбаланса обычно указывается в гмм, гсм. 1гсм = 10гмм.

Иногда для задания допуска используют отношение значения дисбаланса к массе ротора, называемое удельным дисбалансом . Удельный дисбаланс соответствует эксцентриситету центра массы ротора.
е ст = D/m (2)

Дисбалансы устраняются балансировкой. Балансировка - это процесс определения значений и углов дисбалансов ротора, и уменьшения их корректировкой масс. На практике получили распространение два вида балансировки: статическая и динамическая.


2. Балансировка. Общие сведения

Статическая балансировка, как правило, проводится в одной плоскости коррекции и применяется, главным образом, к дисковым роторам. Её можно использовать, если отношение длины ротора к его диаметру не превышает 0,25. Плоскостью коррекции называют плоскость, перпендикулярную оси ротора, в которой расположен центр корректирующей массы (массы, используемой для уменьшения дисбалансов ротора).

При статической балансировке определяется и уменьшается главный вектор дисбалансов ротора, характеризующий его статическую неуравновешенность. Главный вектор дисбалансов равен сумме всех векторов дисбалансов, расположенных в различных плоскостях, перпендикулярных оси ротора (см. рис. 4).

Рис.4



Для роторов, у которых их длины соизмеримы с диаметрами или превосходят их, статическая балансировка неэффективна, а в некоторых случаях может оказаться вредной. Например, если плоскость коррекции окажется на значительном расстоянии от главного вектора дисбалансов, то, уменьшив статическую неуравновешенность, можно увеличить моментную неуравновешенность.

Динамическая балансировка - это такая балансировка, при которой определяются и уменьшаются дисбалансы ротора, характеризующие его динамическую неуравновешенность (см. рис.4). При динамической балансировке уменьшаются как моментная, так и статическая неуравновешенность ротора одновременно.

Есть много методов балансировки. Все они основаны на предположении линейности системы, то есть амплитуды колебаний считаются пропорциональными значению дисбаланса, а фазы независимы от его величины. Существует одноплоскостная и многоплоскостная балансировка. При одноплоскостной балансировке расчёт корректирующих масс производится последовательно для каждой плоскости коррекции, при многоплоскостной - одновременно.

Многоплоскостная балансировка с использованием метода одновременного измерения амплитуд и фаз колебаний наиболее распространена при балансировке роторов агрегатов типа ГТК 10-4. Точнее, наиболее распространена двухплоскостная балансировка, которая является частным случаем многоплоскостной. Для расчёта корректирующих масс при таком методе балансировки необходимо выполнить, как минимум, три пуска: один начальный (нулевой) и два пробных с единичными (пробными) массами m п1 , m п2 , установленными на расстояниях r п1 , r п2 от оси вращения (см. рис.5). Порядок и комбинации установок пробных грузов могут быть различными.

Рис.5.


При использовании этого метода балансировки считают, что система позволяет использовать принцип суперпозиции. Расчёт корректирующих масс и мест их установки в такой системе может производиться различными способами: графическим, аналитическим или графоаналитическим.

Графические и графоаналитические расчёты с построением достаточно сложных векторных диаграмм широко использовались до появления балансировочных средств с микропроцессорами. Приёмы выполнения таких расчётов можно найти в литературе . В настоящее время они практически не используются, так как современная техника обеспечивает решение таких задач проще, точнее и быстрее.

Современная микропроцессорная техника с помощью программных средств решает задачу расчёта чаще всего аналитически. Рассмотрим, в чём заключается суть решения этой задачи.

Колебания системы ротор - опорная конструкция могут быть описаны системой уравнений (при каждом пуске двумя уравнениями с шестью неизвестными).


А0 = ? а1 D I +? а2 D II

В0 = ? в1 D I + ? в2 D II
А1 = ? а1 (D I +r п1 m п1 ) + ? а2 DII
В1 = ? в1 (D I +r п1 m п1 ) + ? в2 D II (5)
А2 = ? а1 D I + ? а2 (D II +r п2 m п2 )
В2 = ? в1 D I + ? в2 (D II +r п2 m п2 )

Где, А 0 ,А 1 ,А 2 , В 0 ,В 1 ,В 2 – амплитуды колебаний опор "а", "в" при нулевом и пробных пусках, произведённых на одной частоте.
? а1 , ? а2 , ? в1 , ? в2 – коэффициенты влияния, представляющие векторы колебаний опор "а" и "в", вызванных единичными массами mп1, mп2.
D I , D II – исходные дисбалансы в выбранных плоскостях коррекции І и ІІ.
r п1 m п1 , r п2 m п2 – внесённые дисбалансы за счёт установки единичных (пробных) масс, в плоскостях коррекции І и ІІ.

В этих уравнениях неизвестны шесть векторных величин: D I , D II , ? а1 , ? а2 , ? в2 , ? в2 . Чтобы найти их, необходимо решить систему этих уравнений. Определение коэффициентов влияния и корректирующих масс для компенсации исходных дисбалансов является достаточно сложной задачей. Однако решение такой задачи с помощью современных средств, осуществляется автоматически в процессе пусков. Определённые из уравнений (5) коэффициенты влияния можно использовать для расчёта корректирующих масс при балансировке последующих однотипных роторов без выполнения двух пробных пусков.

В тех случаях, когда число плоскостей коррекции большее, чем 2 (например, если производится балансировка одного ротора с опорами более, чем 2-е или балансировка сцепленных роторов), количество пробных пусков определяется числом плоскостей коррекции, в каждую из которых последовательно устанавливаются пробные массы. Уравнения, описывающие колебания системы, составляются аналогично, как и при двухплоскостной балансировке. Система этих уравнений и её решение усложняются, так как количество коэффициентов влияния увеличивается за счёт увеличения количества плоскостей коррекции и увеличивается количество уравнений за счёт увеличения количества пусков.

Чаще всего динамическая балансировка проводится на балансировочных станках. Обычно балансировка на станках проводится на более низких оборотах, чем рабочие обороты роторов. Это обусловлено техническими возможностями балансировочных станков. Высокооборотные балансировочные станки мало распространены из-за их дороговизны и большой энергоёмкости. Балансировка на низкооборотных станках достаточно эффективна и обеспечивает высокую точность в тех случаях, когда ротора относятся к классу жёстких роторов . Для гибких роторо в балансировка на низкооборотных станках не всегда эффективна.

Жёсткий ротор определяется как ротор, который сбалансирован на частоте вращения, меньшей первой критической в двух произвольных плоскостях коррекции и у которого значения остаточных дисбалансов не будут превышать допустимые на всех частотах вращения вплоть до наибольшей эксплуатационной. Динамическая балансировка жёсткого ротора производится, как правило, в двух плоскостях.

Гибкий ротор определяется, как ротор, который сбалансирован на частоте вращения, меньшей первой критической в двух произвольных плоскостях коррекции и у которого значения остаточных дисбалансов могут превышать допустимые на иных частотах вращения вплоть до наибольшей эксплуатационной . При балансировке гибких роторов используется, как правило, более двух плоскостей коррекции.


3. Выбор допуска и точности балансировки

Из практики известно, что виброскорость является наиболее объективным критерием для оценки вибрации. Исходя из этого, чаще всего оценка и нормирование вибрационного состояния производится по виброскорости. Поэтому допуск на балансировку принято устанавливать таким образом, чтобы в рабочем диапазоне оборотов иметь приемлемую виброскорость. Исходя из этих условий допустимый дисбаланс должен изменяться обратно пропорционально частоте вращения ротора. То есть чем выше рабочая частота вращения, тем меньше должен быть допустимый дисбаланс. Следовательно должна обеспечиваться следующая зависимость:
е ст w = Конст. , где е – удельный дисбаланс, w – угловая частота.
При этом предполагается, что ротор и опоры жёсткие. Величину естw приняли определяющей при классификации точности балансировки.

Классы точности балансировки жёстких роторов установлены ГОСТом 22061-76 в соответствии с международным стандартом ИСО 1949.

Согласно этой классификации каждый класс характеризуется постоянной величиной е ст w. Каждый последующий класс отличается от предыдущего в 2,5 раза. ГОСТ 22061-76 устанавливает 13 классов точности; с нулевого по двенадцатый, для различных групп жёстких роторов. Ротора газоперекачивающих агрегатов относятся к 3-ему классу точности. Значения допустимых дисбалансов рассчитываются и задаются разработчиком машин согласно ГОСТу 22061-76.


4. Особенности балансировки крупногабаритных роторов

Балансировка крупногабаритных типа ОК ТВД ГТК 10-4 роторов имеет свои особенности, хотя нет нормативных документов, устанавливающих какое - либо разделение роторов в зависимости от их габаритов. При больших длинах (более 4-х метров) и больших массах роторов (весом в несколько тонн) необходимо учитывать влияние термических деформаций на дисбалансы. При таких размерах температура роторов неодинакова в различных точках. Это обусловлено тем, что в производственных помещениях всегда имеются источники теплового излучения и конвекционных потоков. Да и сами балансировочные станки являются таковыми. Длинные ротора особенно чувствительны к малейшему перепаду температуры в радиальном направлении. Проведённые исследования влияния тепловых деформаций роторов (ОК ТВД агрегата ГТК 10-4) на дисбалансы показывают, что перепад температуры в радиальном направлении на 1єС (при длине ротора 4 и более метров) приводит к термическим дисбалансам, в 5-10 раз превышающим допуск. Для исключения ошибок при балансировке из-за тепловых деформаций необходимо обеспечить предварительную термостабилизацию балансируемых роторов. На практике это осуществляется следующим образом. Ротора, поступающие на балансировку, выдерживаются в помещении до выравнивания его температуры с температурой окружающей среды. Затем ротор устанавливается на станок и приводится во вращение. Ротора весом более 5т необходимо выдержать в режиме непрерывного вращения (или в режиме пуск – останов - пуск) в течение не менее 2-х часов и лишь после этого произвести его балансировку. В процессе вращения выравнивается температура в радиальном направлении. Если балансировка по каким - либо причинам была прервана (прекращение вращения около 1 часа и более), то её завершению вновь должна предшествовать операция вращения ротора для выравнивания температуры в радиальном направлении. При перерывах менее 2-х часов время вращения для выравнивания температуры требуется не более времени перерыва.

Внимание! У Вас нет прав для просмотра скрытого текста.


Источники информации, принятые во внимание при составлении методического пособия по балансировке роторов.

    ГОСТ 19534 – 74. Балансировка вращающихся тел. Термины.

    ГОСТ 22061 – 76 Система классов точности балансировки и методические указания.

    Руководящие указания по балансировке роторов ГТУ на балансировочном станке и в собственных подшипниках. "Оргэнергогаз" М., 1974год.

    Вибрации в технике. Т.6. Защита от вибрации и ударов. Под ред. чл.-кор. АН СССР К.В. Фролова. М. "Машиностроение", 1981г.

    Сидоренко М.К. Виброметрия газотурбинных двигателей.

Просмотров