Измеряется напряжение сети. В чем измеряется напряжение. Маркировка шкалы мультиметра

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии . То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула:

где U - напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока ? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

2) Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются

связанными: электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются

вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направлен-ного движения зарядов

Поэтому для диэлектриков не проходят наши доказательства свойств

проводников - ведь все эти рассуждения опирались на возможность появления тока. И дей-ствительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье,

не распростаняется на диэлектрики.

2. Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3. Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4. Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о

«потенциале диэлектрика» не приходится.

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации . Физический смысл вектора электрической поляризации - это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

    Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация - состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью , направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством:

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

    Электронная - смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10 −15 с). Не связана с потерями.

    Ионная - смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10 −13 с, без потерь.

    Дипольная (Ориентационная) - протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

    Электронно-релаксационная - ориентация дефектных электронов во внешнем электрическом поле.

    Ионно-релаксационная - смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

    Структурная - ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

    Самопроизвольная (спонтанная) - благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10 −2)

    Резонансная - ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.

    Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.

Чем напряжение отличается от силы тока, сопротивления и мощности, можно воспользоваться такой аналогией. Представьте себе трубу, к которой приложено определенное давление газа или жидкости. Это давление - напряжения. От давления и будет зависеть количество вещества, проходящего через трубу за единицу времени. Здесь - аналог сопротивления, а количество вещества, проходящего через трубу за единицу времени - аналог силы тока. При этом, на трубе будет выделяться в виде тепла определенная мощность по причине трения. Это аналог тепловой мощности, выделяющейся на проводнике с током.

Напряжение измеряется в вольтах. Эта названа в честь итальянского ученого Алессандро Вольта, изобретателя одного из видов электрохимических источников тока. Тысяча вольт называется киловольтом, миллион вольт - киловольтом. Тысячная доля вольта носит название милливольта, миллионная - микровольтом.

Напряжение бывает постоянным и переменным. Во втором случае оно периодически меняет полярность с определенной частотой. У переменного напряжения имеется два значения: амплитудное и действующее. Первое характеризует размах колебаний, а второе - эквивалентное постоянное напряжение, которое выделило бы на такой же нагрузке ту же мощность. Соотношение между амплитудным и действующим значениями напряжения зависит от его формы. У синусоидального однофазного напряжения амплитудное значение превышает действующее в количество раз, равное корню из двух.

Понятие «опасное напряжение» не совсем верное. Опасность воздействия электричества на человека зависит не от напряжения, а от силы тока. Другое дело, что кожа имеет определенное сопротивление, и поэтому опасный ток в ней может возникнуть при определенном значении напряжения. Кожа разных людей имеет различное сопротивление, также оно зависит от психического и физического состояния. Поэтому порог опасного напряжения может меняться даже у одного и того же человека. При определенном напряжении кожа пробивается, и к источнику оказывается приложено значительно меньшее сопротивление подкожных слоев, что еще опаснее.

Помимо электрического существует также механическое напряжение. Оно возникает в конструкциях, к которым приложены внешние механические воздействия. К тому же, в некоторых конструкциях могут возникать еще на этапе изготовления внутренние напряжения. Если изготовить объект из прозрачного материала и поместить между двумя поляризаторами, можно определить наличие в них таких напряжений. А в переносном смысле напряжением называют напряженное состояние психики человека.

Всем привет, на связи с вами снова Владимир Васильев. Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех, только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?». Может быть это прошаренный спец зашел из любопытства почитать что я тут накалякал? А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора? 🙂

Знаете все это маловероятно, потому как для прошаренного специалиста все это уже пройденный этап и скорее всего все уже не так интересно и они сами с усами. Им может быть интересно лишь из праздного любопытства, мне конечно очень приятно и я жду каждого с распростертыми объятьями.

Так что я пришел к выводу, что основной контингент моего блога да и большинства радиолюбительских сайтов это новички и любители рыскающие по интернету в поисках полезной информации. Так какого лешего, у меня ее так мало? Будет в скором временя поболее так что не пропустите!

Я вспоминаю себя, когда я искал в интернете какую-нибудь простенькую схемку чтобы с чего-нибудь начать, но постоянно что-то не подходило, что-то казалось заумным. Мне не хватало азов, таких, чтобы можно было по принципу от простого к сложному начать разбираться в интересующей меня теме.

Кстати первая книга которая мне действительно помогла, от прочтения которой действительно начало приходить понимание — это была книга «Искусство схемотехники» П. Хоровица, У. Хилла. Я писал про нее в , там и книжку можно скачать. Так вот, если вы новичок то обязательно ее скачайте и пусть она станет вашей настольной книгой.

Что такое напряжение и ток?

Кстати действительно что же такое электрический ток и напряжение? Я думаю, что никто на самом деле и не знает, ведь чтобы это знать это надо хотябы видеть. Кто может видеть ток, бегущий по проводам?

Да никто, человечество еще не достигло таких технологий, чтобы воочию наблюдать движения электрических зарядов. Все что мы видим в учебниках и научных трудах это некая абстракция созданная в результате многочисленных наблюдений.

Ну ладно об этом можно много рассуждать… Так давайте попробуем разобраться, что такое электрический ток и напряжение. Я не буду писать определения, определения не дают самого понимания сути. Если интересно, возьмите любой учебник по физике.

Так как мы его не видим электрического тока и всех процессов протекающих в проводнике, тогда попробуем создать аналогию.

И традиционно электрический ток текущий в проводнике сравнивают с водой бегущей по трубам. В нашей аналогии вода это электрический ток. Вода бежит по трубам с определенной скоростью, скорость это сила тока, измеряемая в амперах. Ну трубы это само собой проводник.

Хорошо, электрический ток мы себе представили, но а что такое напряжение? Сейчас помозгуем.

Вода в трубе, в отсутствии каких-либо сил (сила тяжести, давления) теч не будет, она будет покоиться как и любая другая жижа вылитая на пол. Так вот эта сила или точнее сказать энергия в нашей водопроводной аналогии и будет тем самым напряжением.

Но что происходит с водой бегущей из резервуара расположенного высоко над землей? Вода устремляется бурным потоком из резервуара к поверхности земли, гонимая силами тяготения. И чем выше от земли расположен резервуар тем с большей скоростью вытекает вода из шланга. Понимаете о чем я говорю?

Чем выше резервуар, тем больше сила (читай напряжение) воздействующая на воду. И тем больше скорость водного потока (читай сила тока). Теперь становится понятно и в голове начинает создаваться красочная картинка.

Понятие потенциала, разности потенциалов

С понятием напряжения электрического тока тесно связано понятие «потенциал» , или «разность потенциалов». Хорошо, обратимся снова к нашей водопроводной аналогии.

Наш резервуар находится на возвышенности что позволяет воде беспрепятственно стекать по трубе вниз. Так как бак с водой на высоте, то и потенциал этой точки будет более высоким или более положительным чем тот что находится на уровне земли. Видите что получается?

У нас появилось две точки имеющие разные потенциалы, точнее разную величину потенциала.

Получается, для того чтобы электрический ток мог бежать по проводу, потенциалы не должны быть равны. Ток бежит от точки с большим потенциалом к точки с меньшим потенциалом.

Помните такое выражение, что ток бежит от плюса к минусу. Так вот это все тоже самое. Плюс это более положительный потенциал а минус более отрицательный.

Кстати а хотите вопрос на засыпку? Что произойдет с током, если величины потенциалов будет периодически меняться местами?

Тогда мы будем наблюдать то как электрический ток меняет свое направление на противоположное каждый раз как потенциалы поменяются. Это получится уже переменный ток. Но его мы пока рассматривать не будем, дабы в голове сформировалось ясное понимание процессов.

Измерение напряжения

Для замера напряжение используется прибор вольтметр, хотя сейчас наиболее популярны мультиметры. Мультиметр это такой комбинированный прибор имеющий в себе много чего. О нем я писал и рассказывал как им пользоваться.

Вольтметр это как раз тот прибор который измеряет разность потенциалов между двумя точками. Напряжение (разность потенциалов) в любой точке схемы обычно измеряется относительно НОЛЯ или ЗЕМЛИ или МАССЫ или МИНУСА батарейки. Не важно главное это должна быть точка имеющая наименьший потенциал во всей схеме.

Итак чтобы измерить напряжение постоянного тока между двумя точками, делаем следующее. Черный (минусовой) щуп вольтметра втыкается в ту точку, где предположительно мы можем наблюдать точку с меньшим потенциалом (НОЛЬ). Красный щуп (плюсовой) втыкаем в точку, потенциал которой нам интересен.

И результатом измерения будет числовое значение разности потенциалов, или другими словами напряжение.

Измерение тока

В отличие от напряжения, которое замеряется в двух точках, величина тока замеряется в одной точке. Так как сила тока (или говорят просто ток) по нашей аналогии есть скорость течения воды, то эту скорость нужно замерять только в одной точке.

Нам нужно распилить водопровод и вставить в разрыв некий счетчик, который будет подсчитывать литры и минуты. Както так.

Аналогично если вернемся в реальный мир нашей электрической модели, то получим тоже самое. Чтобы замерить величину электрического тока, нам нужно подключить в разрыв электрической цепи нехитрый прибор — амперметр. Амперметр также входит в состав мультиметра. Вы также можете почитать в .

Щупы мультиметра нужно переставить в режим измерения тока. Затем перекусываем наш проводник, и подключаем обрывки провода к мультиметру и вуаля — на экране мультиметра будет показана величина тока.

Ну что дорогие друзья, я думаю что мы не теряли время даром. Ознакомившись с нашими водопроводными моделями в голове начал складываться пазл, начало формироваться понимание.

Ну чтож попробуем проверить его на законе Ома.

  • I — ток измеряемый в Амперах (А);
  • U-напряжение измеряемое в Вольтах (В);
  • R-сопротивление измеряемое в Омах (Ом)

Ом нам говорил, что Электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Про сопротивление я сегодня не говорил, но я думаю что вы поняли. Сопротивление электрическому току оказывается материалом проводника. В нашей водопроводной системе сопротивление току воды оказывают ржавые трубы, забитые ржавчиной и прочей какой. 🙂

Таким образом закон Ома работает во всей своей красе что для водопроводной системы, что для электрической. Может быть мне податься в сантехники, уж очень много схожего. 🙂

Чем выше задран резервуар с водой, тем быстрее по трубам будет теч вода. Но если трубы загажены то скорость будет меньше. Чем больше сопротивление воде тем медленнее она будет теч. Если засор, то вода вообще может встать.

Ну и для электричества. Величина тока зависит прямо пропорционально от величины напряжения (разности потенциалов), и обратно пропорционально зависит от сопротивления.

Чем выше напряжение тем больше величина тока, но чем больше сопротивление тем меньше величина тока. Напряжение может быть очень большим, но ток может не теч из-за обрыва. А обрыв это все равно, что если вместо металлического проводника мы подключили проводник из воздуха, а воздух обладает просто гигантским сопротивлением. Вот ток и остановится.

Чтоже дорогие друзья, вот и подходит время закругляться, вроде все что хотел сказать в этой статье я сказал. Если остаются какие-либо вопросы спрашивайте в комментариях. Дальше будет больше, планирую написать череду обучающих материалов, так что не пропустите…

Желаю вам удачи, успехов и до новых встреч!

С н/п Владимир Васильев.

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Конструктор ЗНАТОК 320-Znat «320 схем» — это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.

Конструктор представляет собой набор полноценных радиодеталей имеющих спец. конструктив, позволяющий их монтаж без помощи паяльника. Радиокомпоненты монтируются на специальную плату — основание, что позволяет в конечном итоге получить вполне функциональные радиоконструкции.

Используя этот конструктор можно собрать до 320 различных схем, для построения которых есть развернутое и красочное руководство. А если подключить фантазию в этот творческий процесс то можно получить бесчисленное количество различных радиоконструкций и научиться анализировать их работу. Этот опыт я считаю очень важен и для многих он может оказаться бесценным.

Вот несколько примеров того, что Вы можете сделать благодаря этому конструктору:

Летающий пропеллер;
Лампа,включаемая хлопком в ладоши или струей воздуха;
Управляемые звуки звездных войн, пожарной машины или скорой помощи;
Музыкальный вентилятор;
Электрическое световое ружье;
Изучение азбуки Морзе;
Детектор лжи;
Автоматический уличный фонарь;
Мегафон;
Радиостанция;
Электронный метроном;
Радиоприемники, в том числе FM диапазона;
Устройство, напоминающее о наступлении темноты или рассвета;
Сигнализация о том, что ребенок мокрый;
Защитная сигнализация;
Музыкальный дверной замок;
Лампы при параллельном и последовательном соединении;
Резистор как ограничитель тока;
Заряд и разряд конденсатора;
Тестер электропроводимости;
Усилительный эффект транзистора;
Схема Дарлингтона.

P.S. У нас тут есть своеобразный жлобометр — жадный не заметит соцкнопки, а щедрый делится с друзьями. 🙂

Для измерения напряжения служат вольтметры, милливольтметры, микровольтметры различных систем. Эти приборы включаются параллельно нагрузке, поэтому сопротивление их должно быть как можно больше (примерно на два порядка больше сопротивления любого элемента цепи).

Рисунок 6 Рисунок 7

Для расширения пределов измерения вольтметра (в k раз) в цепях постоянного тока напряжением до 500В обычно применяют добавочные сопротивления R d , включаемые в цепь последовательно с вольтметром.

Из соотношения
определим
,

Где U max - наибольшее значение напряжения, которое может быть измерено вольтметром с добавочным сопротивлением;

U вн - предельное (номинальное) значение шкалы вольтметра при отсутствии R д.

Величина фактически измеряемого напряжения U определяется из соотношения:

;
,

где U в - показание вольтметра.

В цепях переменного тока для изменения пределов измерения вольтметра применяют трансформаторы напряжения.

Измерение мощности. Измерение мощности в цепях постоянного и однофазного токов

Мощность в цепях постоянного тока, потребляемая данным участком электрической цепи, равна:

и может быть измерена амперметром и вольтметром.

Помимо неудобства одновременного отсчёта показаний двух приборов, измерение мощности этим способом производится с неизбежной погрешностью. Удобнее измерять мощность в цепях постоянного тока ваттметром.

Измерить активную мощность в цепи переменного тока амперметром и вольтметром нельзя, т.к. мощность такой цепи зависит и от соsφ:

Поэтому в цепях переменного тока активная мощность измеряется только ваттметром.

Рисунок 8

Неподвижная обмотка 1-1 (токовая) включается последовательно, а подвижная 2-2 (обмотка напряжения) параллельно с нагрузкой.

Для правильного включения ваттметра один из зажимов токовой обмотки и один из зажимов обмотки напряжения отмечают звёздочкой (*). Эти зажимы, называемые генераторными, необходимо включать со стороны источника питания, объединив их вместе. В этом случае ваттметр будет показывать мощность, идущую со стороны сети (генератора) к приёмнику электрической энергии.

Измерение активной мощности в цепях трёхфазного тока

При измерении мощности трёхфазного тока применяют различные схемы включения ваттметров в зависимости от:

    системы проводки (трёх- или четырёхпроводная);

    нагрузки (равномерная или неравномерная);

    схемы соединения нагрузки (звезда или треугольник).

а) измерение мощности при симметричной нагрузки; система проводки трех- или четырехпроводная:

Рисунок 9 Рисунок10

В этом случае мощность всей цепи можно измерить одним ваттметром (рисунки 9,10), который покажет мощность одной фазы Р=3P ф =3U ф I ф соsφ

б) при несимметричной нагрузке мощность трёхфазного потребителя можно измерить тремя ваттметрами:

Рисунок 11

Общая мощность потребителя равна:

в) измерение мощности методом двух ваттметров:

Рисунок 12

Применяется в 3-х проводных системах трехфазного тока при симметричной и несимметричной нагрузках и любом способе соединения потребителей. При этом токовые обмотки ваттметров включаются в фазы А и В (например), а параллельные на линейные напряжения U АС и U ВС (или А и С  U АВ и U СА), (рис. 12).

Общая мощность P=P 1 +P 2 .

Электричество воспринимается нами как данность и вряд ли кто задумывается над тем, что такое электрическое напряжение и какова его физическая сущность, когда включает свет, компьютер или стиральную машину. На самом же деле оно заслуживает гораздо большего внимания, и не только потому, что может быть смертельно опасным, но и из-за того, что Человечество, овладев этим видом энергии, совершило качественный цивилизационный скачок.

Вспомним один из наиболее интересных моментов на школьном уроке физики, когда преподаватель вращал диск электрической машины, а между металлическими шариками проскакивала искра. Это и есть видимое отражение природного феномена под названием электрический ток. Он возникает из-за того, что на одном шарике отрицательно заряженных ионов больше, а на другом меньше, из-за чего возникает разность потенциалов, то есть факт, нарушающий основной закон Природы – сохранения энергии.

Отрицательно заряженные частицы стремятся переместиться туда, где их меньше, тем самым обнулив разницу. Конечно же, электроны не проходят весь путь между заряженными шариками, называемых полюсами. Их пробег ограничивает кристаллическая решетка, узлов которой они не могут покинуть. Зато способны удариться о соседние частицы и передать импульс по цепочке дальше, создавая эффект домино. Каждое такое соударение порождает выплеск энергии, из-за чего система переходит из состояния покоя в возбужденное, которое и принято называть электрическим напряжением.

Сила, движущая заряженные частицы

Чтобы поставить себе на службу электрическое напряжение и ток, человеку надо было найти силу, которая могла возобновлять разницу потенциалов между полюсами, порождая непрерывное соударение частиц кристаллической решетки. Их оказалось целых три:

  1. Электромагнитная индукция – возникновение тока в результате взаимозависимого перемещения металлов в магнитном поле. Используется в генераторах постоянного и переменного тока.
  2. Электрохимическое взаимодействие, порождаемая разностью потенциалов кристаллических решеток веществ. Используется в аккумуляторах, батареях питания постоянного тока.
  3. Термохимическая реакция, повышающая активность электронов в результате нагрева.

Сила, порождающее движение заряженных частиц, получила наименование «электродвижущая» (аббревиатура ЭДС) и обозначается на схемах буквой «Е», обычно сопутствующей мнемосимволам разъемов, к которым подключается источник питания.

Вольты и амперы

ЭДС и напряжение измеряются в вольтах – условной единице, названной в честь итальянца Алессандро Вольты, официально признанного изобретателя гальванической батареи – источника постоянного тока. Это количество работы, которая совершается при перемещении единицы заряда (кулона), если при этом был потрачен 1 джоуль условной энергии.

Однако существует и вторая единица измерения электрического тока – ампер, названная в честь французского физика Андре-Мари Ампера. Традиционно ее называют силой тока, хотя правильнее применять термин «магнитодвижущая сила», что наиболее полно отражает двуединую физическую сущность заряженной частицы.

Магнитное и электрическое поля электрона стремятся к взаимной компенсации, а их зависимость определяется законом Ома, описываемого формулой I = U / R. Если сопротивление среды резко падает (например, при коротком замыкании), то сила тока растет по экспоненте. Это вызывает ответное падение напряжения, в результате чего система приходит в равновесное состояние. Подобный эффект можно заметить во время работы сварочного трансформатора, когда при возникновении дуги лампы накаливания почти гаснут.

Существует и другой эффект: при большом сопротивлении среды заряд одного знака копится на какой-либо поверхности до тех пор, пока напряжение не достигнет критического уровня, после чего происходит пробой (возникновение тока) в направлении поверхности с наибольшей разницей потенциала. Статическое напряжение чрезвычайно опасно, поскольку в момент разряда оно может порождать токи силой в сотни ампер. Поэтому металлические конструкции, длительное время находящиеся в магнитном поле, обязательно заземляются.

Постоянный или переменный?

Напряжение – это статическая составляющая электричества, а сила тока – динамическая, ведь его направление меняется вместе с полярностью на концах проводника. И это свойство оказалось очень полезным для распространения электричества по Миру. Дело в том, что любой ток затухает из-за внутреннего сопротивления среды, согласно всё тому же закону сохранения энергии. Но оказалось, что двигающийся в одну сторону поток электронов усилить очень сложно, а циклически изменяющий направление – просто, для этого применяется трансформатор с двумя обмотками на одном сердечнике.

Чтобы получить переменный ток, надо вывернуть наизнанку принцип, открытый Фарадеем, который в своем прообразе электрического генератора вращал медный диск в поле действия постоянного магнита. Никола Тесла сделал наоборот – поместил вращающийся электромагнит внутрь неподвижной обмотки, получив неожиданный эффект: в момент прохождения полюсов через нейтраль магнитного поля амплитуда напряжения падает до нуля, а потом снова растет, но уже с другим знаком. За один оборот направление движения электронов в проводнике меняется два раза, составляя рабочую фазу. Поэтому переменный ток называют еще и фазным. А порождающее его напряжение – синусоидальным.

Никола Тесла создал генератор с двумя обмотками, расположенными под углом в 90 0 друг к другу, а русский инженер М.О. Доливо-Добровольский усовершенствовал его, расположив на статоре три, что увеличило стабильность работы электрической машины. В результате этого промышленный переменный ток стал трехфазным.

Почему 220 вольт 50 Гц?

В нашей стране бытовая однофазная сеть имеет номиналы 220 вольт и 50 герц. Причина появления именно этих цифр весьма интересна.

Пальма первенства в бытовом освоении электричества принадлежит Томасу Эдисону. Он использовал исключительно постоянный ток, поскольку гениального изобретения Николой Тесла переменного еще не произошло.

Первым электрическим прибором оказалась лампа накаливания с угольной нитью. Опытным путем было установлено, что лучше всего она работает при напряжении в 45 вольт и включенном в цепь балластном сопротивлении, обеспечивающим рассеивание еще двадцати. Приемлемая длительность работы обеспечивалась последовательным включением двух ламп. Итого в бытовой сети, по мнению Эдисона, должно было быть 110 вольт.

Однако передача постоянного тока от электростанций к потребителям сопровождалась большими трудностями: через одну-две мили он затухал полностью. По Закон Джоуля - Ленца количество тепла, рассеиваемое проводником при прохождении тока, вычисляется по следующей формуле: Q = R . I 2 . Чтобы снизить потери вчетверо, напряжение увеличили до 220 вольт, а силовую линию построили из трех проводников – с двумя «плюсами» и одним «минусом». Потребитель получал все те же 110 вольт.

Противостояние Николы Теслы и Томаса Эдисона, названное «Войной токов», решилось в пользу переменного, поскольку его можно было передавать на большие расстояния с минимальными потерями. Тем не менее напряжение между силовыми проводниками осталось 220, а линейное, поступающее к потребителю – 127 вольт, поскольку из-за сдвига фаз на 120 градусов амплитуды напряжения не складываются арифметически, а умножаются на 1,73 – корень квадратный из трех.

В СССР сетевым номиналом 127 вольт в одной фазе пользовались до начала 60-х годов. В ходе усовершенствования электрических линий, проводимого с целью увеличения передаваемой мощности, конструкторы пошли по тому же пути, что и Эдисон – повысили напряжение.

За точку отсчета приняли 220 вольт, которые измерялись между фазами. Оно стало бытовым. А промышленное межфазное напряжение 380 вольт получилось умножением 220 на 1,73. Частота 50 Гц – это 3 тыс. колебаний в минуту, то есть, оптимальное количество оборотов коленвала дизеля или другого двигателя внутреннего сгорания, который приводит в действие машину переменного тока.

Теперь вы знаете, что такое напряжение и электрический ток, в каких единицах они измеряются и как зависят друг от друга, а также почему в вашей розетке именно 220 вольт. Приведенные факты не носят академического характера и не претендуют на истину в последней инстанции. Более подробно ознакомиться с природой этого феномена вы можете в учебниках по электротехнике.

Просмотров