Lc полосовой фильтр на транзисторах. Активный трехполосный фильтр на базе NM2116. Пассивные и активные фильтры низких частот

Такой фильтр был изготовлен для мощного автомобильного сабвуфера. Представленная схема — , который срезает все ненужные полосы, оставляя только низкие. Затем сигнал усиливается и подается на вход сабвуферного усилителя. Именно благодаря такому НЧ фильтру головка играет на низких частотах, (в простонародье называют БАСС).

Схема активного сабвуфера

На плате помимо фильтра НЧ также присутствует сумматор, который предназначен для суммирования сигнала обеих каналов. На вход этого блока подается сигнал с двух каналов (стереофонический), поступая на сумматор, сигнал превращается в один единый, это дает возможность получить дополнительное усиление. После суммирования, сигнал фильтруется и срезаются частоты ниже 16Гц и выше 300Гц. Регулирующий фильтр срезает сигнал от 35Гц — 150Гц.

Таким образом, мы получаем низкочастотный сигнал с возможностью регулировки в указанных пределах. Также имеется фазовый регулятор, который дает возможность согласовать сабвуфер с акустикой автомобиля.


В ФНЧ схеме я применил только пленочные конденсаторы, говорят в усилителях они лучше керамики, но и с керамическими работает очень хорошо, разница не слишком большая.


Монтаж выполнен на печатной плате, которая была создана методом ЛУТ, .


ФНЧ.lay

Такой сабвуфер питается от двухполярного источника питания (+/-15Вольт), поскольку работает совместно с мощным . Если для питания усилителя и блока фильтров (как в моем случае) у вас только один источник питания, то блоку ФНЧ необходим двухполярный стабилизатор напряжения.
Такой блок сумматора и фильтра низких частот может работать буквально с любыми усилителями мощности. Три регулятора, один из них предназначен для регулировки громкости, другой для среза низких частот, третий — регулятор плавной фазы (о чем было сказано выше).


В моем случае были куплены только микросхемы, все остальные пассивные компоненты были сняты из старых плат. Пленочные конденсаторы на входе ФНЧ были выпаяны от старого телевизора, одним словом затраты на такой блок минимальны, не более 3$, взамен можете гордится тем, что аналогичный блок фильтров используют в современных автоусилителях, цена которых порядка 400$.

Психоакустика (наука, изучающая звук и его влияние на человека) установила, что человеческое ухо способно воспринимать звуковые колебания в диапазоне от 16 до 20000 Гц. При том, что диапазон 16-20 Гц (низкие частоты), воспринимается уже не самим ухом, а органами осязания.

Многие меломаны сталкиваются с тем, что большинство поставляемых акустических систем не удовлетворяет их потребности в полной мере. Всегда находятся мелкие недоработки, неприятные нюансы и т.п., которые побуждают собирать колонки с усилителями своими руками.

Возможны и другие причины сборки сабвуфера (профессиональный интерес, хобби и т.п).

Сабвуфер (от англ. «subwoofer») – низкочастотный динамик, который может воспроизводить звуковые колебания в диапазоне 5-200 Гц (в зависимости от типа конструкции и модели). Может быть пассивным (использует выходной сигнал с отдельного усилителя) или активным (оснащается встроенным усилителем сигнала).

Низкие частоты (басы) в свою очередь можно разделить на три основные подвида:

  • Верхние (англ. UpperBass) – от 80 до 150-200 Гц.
  • Средние (англ. MidBass / мидбасы) – от 40 до 80 Гц.
  • Глубокие или подбасы (англ. SubBass) – все что ниже 40 Гц.

Фильтры частот применяются как для работы активных сабвуферов, так и пассивных.

Преимущества активных низкочастотных динамиков заключается в следующем:

  • Активный усилитель сабвуфера не нагружает дополнительно акустическую систему (так как питается отдельно).
  • Входной сигнал может фильтроваться (исключаются посторонние шумы от воспроизведения высоких частот, работа устройства концентрируется только на том диапазоне, в котором динамик обеспечивает наилучшее качество передачи колебаний).
  • Усилитель при правильном подходе к конструкции может гибко настраиваться.
  • Исходный спектр частот можно разделить на несколько каналов, с которыми можно уже работать по-отдельности – низкие частоты (на сабвуфер), средние, высокие, а иногда и сверхвысокие частоты.

Виды фильтров для низких частот (НЧ)

По реализации

  • Аналоговые схемы.
  • Цифровые устройства.
  • Программные фильтры.

По типу

  • Активный фильтр для сабвуфера (так называемый кроссовер, обязательный атрибут любого активного фильтра – дополнительный источник питания)
  • Пассивный фильтр (такой фильтр для пассивного сабвуфера лишь отсеивает необходимые низкие часты в заданном диапазоне, не усиливая сигнала).

По крутизне спада

  • Первого порядка (6 дБ/октав.)
  • Второго порядка (12 дБ/октав.)
  • Третьего порядка (18 дБ/октав.)
  • Четвертого порядка (24 дБ/октав.)

Основные характеристики фильтров:

  • Полоса пропускания (диапазон пропускаемых частот).
  • Полоса задерживания (диапазон существенного подавления сигнала).
  • Частота среза (переход между полосами пропускания и задерживания происходит. нелинейно. Частота, на которой пропускаемый сигнал ослабляется на 3 дБ, называется частотой среза).

Дополнительные параметры оценки фильтров акустических сигналов:

  • Крутизна спада АХЧ (Амплитудно-Частотная Характеристика сигнала).
  • Неравномерность в полосе пропускания.
  • Резонансная частота.
  • Добротность.

Линейные фильтры электронных сигналов различаются между собой по типу кривых (зависимости показателей) АЧХ.

Разновидности таких фильтров чаще всего называются по фамилиям ученых, выявившим эти закономерности:

  • Фильтр Баттерворта (гладкая АЧХ в полосе пропускания),
  • Фильтр Бесселя (характерна гладкая групповая задержка),
  • Фильтр Чебышёва (крутой спад АЧХ),
  • Эллиптический фильтр (пульсации АЧХ в полосах пропускания и подавления),

И другие.

Простейший НЧ фильтр для сабвуфера второго порядка выглядит следующим образом: последовательно подключенная к динамику индуктивность (катушка) и параллельно – емкость (конденсатор). Это так называемый LC-фильтр (L — обозначение индуктивности на электрических схемах, а C – емкости).

Принцип работы заключается в следующем:

  1. Сопротивление индуктивности прямо пропорционально частоте и поэтому катушка пропускает низкие частоты и задерживает высокие (чем выше частота, тем выше сопротивление индуктивности).
  2. Сопротивление емкости обратно пропорционально частоте сигнала и поэтому высокочастотные колебания затухают на входе динамика.

Такой тип фильтров – пассивный. Более сложные в реализации – активные фильтры.

Как сделать простой фильтр для сабвуфера своими руками

Как и было сказано выше, самые простые в конструкции – пассивные фильтры. Они имеют в составе всего несколько элементов (количество зависит от требуемого порядка фильтра).

Собрать свой собственный фильтр НЧ можно по готовым схемам в сети или по индивидуальным параметрам после подробных расчетов требуемых характеристик (для удобства можно найти специальные калькуляторы для фильтров разных порядков, с помощью которых можно быстро рассчитать параметры составляющих элементов – катушек, емкостей и т.п.).

Для активных фильтров (кроссоверов) можно использовать специализированное программное обеспечение, например, такое как «Crossover Elements Calculator».

В некоторых случаях при проектировании схемы может понадобиться фильтр-сумматор.

Здесь оба канала звука (стерео), например, после выхода с усилителя и т.п., необходимо сначала отфильтровать (оставить только НЧ), а потом объединить в один с помощью сумматора (так как сабвуфер чаще устанавливается всего один). Или наоборот, сначала суммировать, а затем отфильтровать НЧ.

В качестве примера возьмем простейший пассивный НЧ фильтр второго порядка.

Если сопротивление динамика будет 4 Ом, предполагаемая частота среза – 150 Гц, то для типа фильтрации по Баттерворту нужны будут.

Здравствуйте, уважаемые радиолюбители! Сегодня хочу вам предложить схему фильтра НЧ для любого . Мною было опробовано не мало схем фильтров, из этого количества некоторые либо не устраивали по звуку, либо запускались с танцами под бубен, либо запускались вообще броском об стену! И вот в один прекрасный день лазил по одному форуму, и наткнулся на пост со схемой. Как писали, схема была найдена на каком-то форуме в давно забытой теме и очень его порадовала своей повторяемостью и хорошим звучанием баса. Большое спасибо этому человеку! Решил и я повторить эту схемку, так как давно в поисках хорошего ФНЧ и нужная микросхема была в наличии.

Скопируйте для увеличения

Сердце схемы, хорошо себя зарекомендовавшая TL074 (084), один сдвоенный переменный резистор, в таком нестандартном для меня включении, и немного пассивных компонентов (резисторы и конденсаторы). Решил, что для питания откажусь от всяких лишних стабилизаторов (7815 и 7915) - потребления схемы небольшое, и поэтому решено запитать схему по простому - пара стабилитронов (применил 1N4712), пара ограничивающих резисторов (1.5 kom у меня), небольшие электролиты по питанию и шунтирующие конденсаторы по 0,1 мкф - все это к основному питанию УНЧ сабвуфера (+-35 вольт в моём случае).

Монтаж выполнен на печатной плате из текстолита - скачать файл . Печатку немного подкорректировал под себя и добавил стабилитроны. Все элементы подписаны, наводите курсор на элементы - показывается его номинал. Переменные резисторы, регулирующий частоту среза и регулировки громкости, в моём варианте выведены с платы на проводках.

Схема работает сразу, делал уже раз десять этот ФНЧ - естественно если не путать номиналы и не оставлять сопельки между дорожек. Также хочу сказать что чувствительности фильтра хватает, чтобы подключать портативные источники звука такие как: сотовый телефон, mp3 плеер и подобные устройства.

Приготовили плату? Тогда берём паяльник, и первым делом запаивайте стабилитроны с ограничивающими резисторами и конденсаторы, панельку для TL-ки. Подключите плату к источнику питания вашего УНЧ (у меня +-35 вольт) - удостоверьтесь что к 4 и 11 ножки микросхемы на панельки поступает +-12 вольт. Если всё правильно - паяем конденсаторы, резисторы.

Не забываем, что конденсаторы нужно ставить пленочные в такие схемы, не считая электролитов и шунтирующих по питанию.

Переменный резистор, на регулировку среза частоты - нужно подключать именно как нарисовано по схеме. Повторюсь, что схема не нуждается в настройках, правильный монтаж и чистка платки от флюса, если использовали упомянутый.

Теперь в своих конструкциях сабвуферов, всегда использую этот фильтр за его хорошее качество баса и простую схему. Также без лишних ненужных наворотов. Рекомендую, как говорится к повторению, с вами был Akplex .

Обсудить статью НЧ ФИЛЬТР ДЛЯ САБВУФЕРА

Активные RC фильтры применяются на частотах ниже 100 кГц. Применение положительной обратной связи позволяет увеличивать добротность полюса фильтра. При этом полюс фильтра можно реализовать на RC элементах, которые значительно дешевле и в данном диапазоне частот меньше по габаритам индуктивностей. Кроме того, величина емкости конденсатора, входящего в состав активного фильтра может быть уменьшена, так как в ряде случаев усилительный элемент позволяет увеличивать ее значение. Применение конденсаторов с малой емкостью позволяет выбирать их типы, обладающие малыми потерями и высокой стабильностью параметров.

При проектировании активных фильтров фильтр заданного порядка разбивается на звенья первого и второго порядка. Результирующая АЧХ получится перемножением характеристик всех звеньев. Применение активных элементов (транзисторов, операционных усилителей) позволяет исключить влияние звеньев друг на друга и проектировать их независимо. Это обстоятельство значительно упрощает и удешевляет проектирование и настройку активных фильтров.

Активные фильтры НЧ первого порядка

На рисунке 2 приведена схема активного RC фильтра нижних частот первого порядка на операционном усилителе. Данная схема позволяет реализовать полюс коэффициента передачи на нулевой частоте, величинами сопротивления резистора R1 и емкости конденсатора C1 можно задать его частоту среза. Именно значения емкости и сопротивления определят полосу пропускания данной схемы активного фильтра.


Рисунок 2. Схема активного RC фильтра нижних частот первого порядка

В схеме, приведенной на рисунке 2, коэффициент усиления определяется отношением резисторов R2 и R1:

(1),

а величина емкости конденсатора C1 увеличивается в коэффициент усиления плюс единица раз за счет эффекта Миллера.

(2),

Следует отметить, что подобный способ увеличения значения емкости приводит к уменьшению динамического диапазона схемы в целом. Поэтому к данному способу увеличения емкости конденсатора прибегают в крайних случаях. Обычно обходятся интегрирующей RC-цепочкой, в которой уменьшение частоты среза достигается увеличением сопротивления резистора при постоянном значении емкости конденсатора. Для того, чтобы устранить влияние цепей нагрузки, на выходе RC-цепочки обычно ставится буферный усилитель с единичным коэффициентом усиления по напряжению.


Рисунок 3. Схема RC фильтра нижних частот первого порядка (RC-цепочка)

Тем не менее, при достаточно низкой частоте среза фильтра низких частот может потребоваться большое значение емкости конденсатора. Электролитические конденсаторы, обладающие значительной емкостью, не подходят для создания фильтров из-за большого разброса параметров и низкой стабильности. Конденсаторы, выполненные на основе керамики с большим значением электрической постоянной ε , тоже не отличаются стабильностью значения емкости. Поэтому применяются высокостабильные конденсаторы малой емкости, и их значение увеличивается в схеме активного фильтра, приведенной на рисунке 2.

Активные фильтры НЧ второго порядка

Еще больше распространены схемы активных фильтров второго порядка, позволяющие реализовать большую крутизну спада АЧХ по сравнению со схемой первого порядка. Кроме того, эти звенья позволяют настраивать частоту полюса на заданное значение, полученное при аппроксимации амплитудно-частотной характеристики. Наибольшее распространение получила схема Саллена-Ки, приведенная на рисунке 4.


Рисунок 4. Схема активного RC фильтра нижних частот второго порядка

Амплитудно-частотная характеристика этой схемы подобна АЧХ звена второго порядка пассивного LC фильтра. Ее вид приведен на рисунке 5.



Рисунок 5. Примерный вид амплитудно-частотной характеристики звена второго порядка активного RC фильтра нижних частот

Частота резонанса полюса при этом может быть определена из формулы:

(3),

а его добротность:

(4),

Частоты нулей в идеальном случае равны бесконечности. В реальной схеме зависят от конструкции печатной платы и параметров использованных резисторов и конденсаторов.

Схема Саллена-Ки позволяет максимально упростить выбор элементов схемы. Обычно конденсаторы C1 и C2 выбирают одинаковой емкости. Резисторы R1 и R2 выбирают одинакового сопротивления. Сначала задаются значением емкостей C1 и C2. Как уже обсуждалось выше, их емкости стараются выбрать минимальными. Именно такие конденсаторы обладают максимально стабильными характеристиками. Затем определяют значение R1 и R2:

(5),

Резисторы R3 и R4 в схеме Саллена-Ки определяют коэффициент усиления по напряжению точно так же как и в обычной схеме инвертирующего усилителя. В схеме активного фильтра именно эти элементы будут определять добротность полюса.

(6),

В схеме активного RC фильтра усилитель охвачен как отрицательной, так и положительной обратной связью. Глубина положительной обратной связи определяется соотношением резисторов R1R2 или конденсаторов C1C2. Если добротность полюса задавать за счет этого соотношения (отказаться от равенства сопротивлений или конденсаторов), то операционный усилитель можно охватить 100% отрицательной обратной связью и обеспечить единичный коэффициент усиления активного элемента. Это позволит упростить схему звена второго порядка. Упрощенная схема активного RC фильтра второго порядка показана на рисунке 6.


Рисунок 6. Упрощенная схема Саллена-Ки

К сожалению при единичном коэффициенте усиления можно задаваться только одинаковыми значениями сопротивлений R1 и R2, а необходимую добротность получать соотношением емкостей. Поэтому расчет начинается с задания номинального значения резисторов R1 = R2 = R. Тогда емкости можно рассчитать следующим образом:

(7),
(8),

Уже много лет все привыкли в качестве активного элемента использовать операционный усилитель. Однако в ряде случаев может оказаться, что схема на транзисторе будет или занимать меньшую площадь, или окажется более широкополосной. На рисунке 7 приведена схема активного ФНЧ, выполненного на биполярном транзисторе.


Рисунок 7. Схема активного RC фильтра нижних частот на транзисторе

Расчет данной схемы (элементов R1, R2, C1, C2) не отличается от расчета, приведенной на рисунке 6. Расчет резисторов R3, R4, R5 не отличается от расчета обычного каскада эмиттерной стабилизации.

Историческая справка

Первыми частотными фильтрами были пассивные LC фильтры. Затем уже в 30-х годах XX века было замечено, что обратная связь в усилительных каскадах способна увеличивать добротность LC контуров радиоусилителей. Одна из наиболее распространенных схем увеличения добротности параллельного LC контура приведена на рисунке 1.


Рисунок 1. Схема увеличения добротности параллельного колебательного контура

Эта особенность в LC схемах большого распространения не получила, так как LC схемы позволяют конструктивными методами обеспечить добротноть, необходимую для реализации большинства схем фильтров, работающих на высоких частотах. В то же самое время схемы с положительной обратной связью, использующиеся для увеличения добротности контуров, обладают способностью к самовозбуждению и обычно ограничивают динамический диапазон выходного сигнала из-за влияния шумов усилительного каскада.

Совершенно другая ситуация сложилась в области низких частот. Это в основном частоты звукового диапазона (от 20 Гц до 20 кГц). В этом диапазоне частот габариты индуктивностей и конденсаторов становятся недопустимо большими. Кроме того, потери этих радиотехнических элементов тоже возрастают, что в большинстве случаев не позволяет получить добротность полюсов фильтра, необходимую для реализации заданной . Все это привело к необходимости применения усилительных каскадов.

Дата последнего обновления файла 18.06.2018

Литература:

  1. Титце У. Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем. — 12-е издание. М.: Додэка XXI, 2015. - 1784

Активные фильтры реализуются на основе усилителей (обычно ОУ) и пассивных RC- фильтров. Среди преимуществ активных фильтров по сравнению с пассивными следует выделить:

· отсутствие катушек индуктивности;

· лучшая избирательность;

· компенсация затухания полезных сигналов или даже их усиление;

· пригодность к реализации в виде ИМС.

Активные фильтры имеют и недостатки:

¨ потребление энергии от источника питания;

¨ ограниченный динамический диапазон;

¨ дополнительные нелинейные искажения сигнала.

Отметим так же, что использование активных фильтров с ОУ на частотах свыше десятков мегагерц затруднено из-за малой частоты единичного усиления большинства ОУ широкого применения. Особенно преимущество активных фильтров на ОУ проявляется на самых низких частотах, вплоть до долей герц.

В общем случае можно считать, что ОУ в активном фильтре корректирует АЧХ пассивного фильтра за счет обеспечения разных условий для прохождения различных частот спектра сигнала, компенсирует потери на заданных частотах, что приводит к получению крутых спадов выходного напряжения на склонах АЧХ. Для этих целей используются разнообразные частотно-избирательные ОС в ОУ. В активных фильтрах обеспечивается получение АЧХ всех разновидностей фильтров: нижних частот (ФНЧ), верхних частот (ФВЧ) и полосовых (ПФ).

Первым этапом синтеза всякого фильтра является задание передаточной функции (в операторной или комплексной форме), которая отвечает условиям практической реализуемости и одновременно обеспечивает получение необходимой АЧХ или ФЧХ (но не обеих) фильтра. Этот этап называют аппроксимацией характеристик фильтра.

Операторная функция представляет собой отношение полиномов:

K(p )=A(p )/B(p ),

и однозначно определяется нулями и полюсами. Простейший полином числителя - константа. Число полюсов функции (а в активных фильтрах на ОУ число полюсов обычно равно числу конденсаторов в цепях, формирующих АЧХ) определяет порядок фильтра. Порядок фильтра указывает на скорость спада его АЧХ, которая для первого порядка составляет 20дБ/дек, для второго - 40дБ/дек, для третьего - 60дБ/дек и д.д.

Задачу аппроксимации решают для ФНЧ, затем с помощью метода инверсии частоты полученную зависимость используют для других типов фильтров. В большинстве случаев задают АЧХ, принимая нормированный коэффициент передачи:

,

где f(х) - функция фильтрации; - нормированная частота; - частота среза фильтра; e - допустимое отклонение в полосе пропускания.

В зависимости от того, какая функция принимается в качестве f(х) различают фильтры (начиная со второго порядка) Баттерворта, Чебышева, Бесселя и др. На рисунке 7.15 приведены их сравнительные характеристики.

Фильтр Баттерворта (функция Батерворта) описывает АЧХ с максимально плоской частью в полосе пропускания и относительно небольшой скоростью спада. АЧХ такого ФНЧ может быть представлена в следующем виде:

где n - порядок фильтра.

Фильтр Чебышева (функция Чебышева) описывает АЧХ с определенной неравномерностью в полосе пропускания, но не большей скоростью спада.

Фильтр Бесселя характеризуется линейной ФЧХ, в результате чего сигналы, частоты которых лежат в полосе пропускания, проходят через фильтр без искажений. В частности, фильтры Бесселя не дают выбросов при обработке колебаний прямоугольной формы.

Помимо перечисленных аппроксимаций АЧХ активных фильтров известны и другие, например, обратного фильтра Чебышева, фильтра Золотарева и т.д. Заметим, что схемы активных фильтров не изменяются в зависимости от типа аппроксимации АЧХ, а изменяются соотношения между номиналами их элементов.

Простейшие (первого порядка) ФВЧ, ФНЧ, ПФ и их ЛАЧХ приведены на рисунке 7.16.

В этих фильтрах конденсатор, определяющий частотную характеристику, включен в цепь ООС.

Для ФВЧ (рисунок 7.16а) коэффициент передачи равен:

,

Частоту сопряжения асимптот находят из условия , откуда

.

Для ФНЧ (рисунок 7.16б) имеем:

,

.

В ПФ (рисунок 7.16в) присутствуют элементы ФВЧ и ФНЧ.

Можно увеличить крутизну спада ЛАЧХ, если увеличить порядок фильтров. Активные ФНЧ, ФВЧ и ПФ второго порядка приведены на рисунке 7.17.

Наклон асимптот у них может достигать 40дБ/дек, а переход от ФНЧ к ФВЧ, как видно из рисунков 7.17а,б, осуществляется заменой резисторов на конденсаторы, и наоборот. В ПФ (рисунок 7.17в) имеются элементы ФВЧ и ФНЧ. Передаточные функции равны :

¨ для ФНЧ:

;

¨ для ФВЧ:

.

Для ПФ резонансная частота равна:

.

Для ФНЧ и ФВЧ частоты среза соответственно равны:

;

.

Довольно часто ПФ второго порядка реализуют с помощью мостовых цепей. Наиболее распространены двойные Т-образные мосты, которые "не пропускают" сигнал на частоте резонанса (рисунок 7.18а) и мосты Вина, имеющие максимальный коэффициент передачи на резонансной частоте (рисунок 7.18б).

Мостовые схемы включены в цепи ПОС и ООС. В случае двойного Т-образного моста глубина ООС минимальна на частоте резонанса, и усиление на этой частоте максимально. При использовании моста Вина, усиление на частоте резонанса максимально, т.к. максимальна глубина ПОС. При этом для сохранения устойчивости глубина ООС, введенной с помощью резисторов и , должна быть больше глубины ПОС. Если глубины ПОС и ООС близки, то такой фильтр может иметь эквивалентную добротность Q»2000.

Резонансная частота двойного Т-образного моста при и , и моста Вина при и , равна , и ее выбирают исходя из условия устойчивости , т.к. коэффициент передачи моста Вина на частоте равен 1/3.

Для получения режекторного фильтра двойной Т-образный мост можно включить так, как показано на рисунке 7.18в, или мост Вина включить в цепь ООС.

Для построения активного перестраемого фильтра обычно используют мост Вина, у которого резисторы и выполняют в виде сдвоенного переменного резистора.

Возможно построение активного универсального фильтра (ФНЧ, ФВЧ и ПФ), вариант схемы которого приведен на рисунке 7.19.

В его состав входят сумматор на ОУ и два ФНЧ первого порядка на ОУ и , которые включены последовательно. Если , то частота сопряжения . ЛАЧХ имеет наклон асимптот порядка 40дБ/дек. Универсальный активный фильтр имеет хорошую стабильность параметров и высокую добротность (до 100). В серийных ИМС довольно часто используется подобный принцип построения фильтров.

Гираторы

Гиратором называется электронное устройство, преобразующее полное сопротивление реактивных элементов. Обычно это преобразователь емкости в индуктивность, т.е. эквивалент индуктивности. Иногда гираторы называют синтезаторами индуктивностей. Широкое распространение гираторов в ИМС объясняется большими трудностями изготовления катушек индуктивностей с помощью твердотельной технологии. Использование гираторов позволяет получить относительно большую индуктивность с хорошими массогабаритными показателями.

На рисунке 7.20 приведена электрическая схема одного из вариантов гиратора, представляющего собой повторитель на ОУ, охваченный частотно-избирательной ПОС ( и ).

Поскольку с увеличением частоты сигнала емкостное сопротивление конденсатора уменьшается, то напряжение в точке а будет возрастать. Вместе с ним будет возрастать напряжение на выходе ОУ. Увеличенное напряжение с выхода по цепи ПОС поступает на неинвертирующий вход, что приводит к дальнейшему росту напряжения в точке а , причем тем интенсивнее, чем выше частота. Таким образом, напряжение в точке а ведет себя подобно напряжению на катушке индуктивности. Синтезированная индуктивность определяется по формуле :

.

Добротность гиратора определяется как :

.

Одной из основных проблем при создании гираторов является трудность в получении эквивалента индуктивности, у которой оба вывода не соединены с общей шиной. Такой гиратор выполняется, как минимум, на четырех ОУ. Другой проблемой является относительно узкий диапазон рабочих частот гиратора (до нескольких килогерц на ОУ широкого применения).

Просмотров