Однотактный ламповый усилитель против двухтактного. Однотактные и двухтактные ламповые усилители: особенности звучания. Однотактный ламповый усилитель мощности звука

За свою радиолюбительскую карьеру, мной было собрано и испытанно более десятка различных усилителей на лампах - как двухтактных, так и однотактных, в том числе и с параллельным включением нескольких . Чаще всего в ход шли старые добрые и . Однако в интернете неоднократно мелькали схемы со строчными пентодами на выходе - 6п45с, 6п44с и 6п41с. На последней и решил остановиться, так как несмотря на более низкую мощность чем у 6п45-ки, она не имеет сверху неудобной и опасной пимпочки, куда подключают провод анода с высоким напряжением. Ещё больше подогрели интерес противоречивые отзывы на аудиофильских форумах - от восхваления, до полного отрицания её звуковых параметров. Как известно, лучше собрать самому, а тогда уже делать окончательный вывод. За основу взял принципиальную схему однотактного усилителя С.Сергеева, только немного изменил номиналы обвязок и смещение выходного каскада.

В драйвере стоит так привычная в выходе 6п14п - тут её роль второстепенна, предварительное усиление. В выходном каскаде - 6п41с с автоматическим смещением, которое отлично зарекомендовало себя своей простотой и стабильностью параметров работы лампы. Единственная трудность - мощный резистор, была решена элементарно. Так как поиск по коробкам с 10-ти ваттными зелёными керамическими резисторами результатов не дал (есть всё, кроме необходимых 450-680 Ом), пришлось спаять гирлянду из трёх МЛТ-2 на небольшой платке, 180х3=560 Ом.

На ней же собран и катодный резистор второго канала. Так как расчётная мощность 2 ватта - этих 6-ти хватает вполне. Всё равно пришлось бы думать, как закрепить 2 мощных трубчатых резистора.

Питание на УНЧ поступает от сетевого трансформатора, выпрямителя и дросселя. Трансформатор ТСШ-170 - от лампового телевизора, сюда можно поставить и ТС-160, ТС-180. В общем любой, способный обеспечить 250-300 В 0,3 А анодного и 6,3 В 3 А накального напряжения. Диоды выпрямителя - IN4007, дроссель - Др-0,1. Он имеет 1000 витков провода 0,25 мм (это если вы не найдёте готовый и будете мотать самостоятельно или брать сетевой трансформатор на его замену).

Несмотря на значительное напряжение и ток в выходном каскаде - около 0,06 А, рискнул поставить относительно слабые ТВЗ-1, более уместные в усилителях 6п14п. Как впоследствии выяснилось правильно сделал:)

Корпус для нашего однотактного УНЧ не мешало бы взять металлический, как всегда до этого и делал, но решил и в этом рискнуть, задействовав ненужную китайскую фронтальную колоночку, от 6-ти канального компьютерного усилителя. Этот номер тоже прошёл на ура:)

Акустическую систему выпотрошим, спроектируем будущее расположение радиоэлементов и выпилим необходимые окна.

Лампы естественно должны находиться сверху, их устанавливаем на металлическое основание - лист двухмиллиметрового алюминия, с вырезанными круглыми окнами под панельки.

Затем этот лист обклеивается самоклейкой цвета "металлик" в тон основному корпусу. После обклейки, отверстия под лампы аккуратно освобождаются с помощью лезвия.

Нижняя часть корпуса тоже усилена металлом - чтоб не вывалился тяжёлый сетевой трансформатор. На неё планировалось установить ещё и электронный фильтр питания, но в итоге от него отказался. Напряжения на выходе БП и так маловато (всего 260 В), поэтому терять 20 В на ЭФ - расточительство.

Сзади выпиливаем прямоугольное окно под текстолитовую панель гнёзд и разъёмов - сетевое, аудиовход и аудиовыход на динамики.

Эту панель так-же обклеиваем самоклейкой.

После чего вставляем все контактные элементы и прикручиваем её шурупами к предварительно выпиленному окну АС.

Большие электролитические конденсаторы установил на единое алюминиевое основание. Этих габаритных электролитов 4 - три для фильтра БП и один на 300 мкФ 63 В, установленный в катоде 6п41с.

Материал корпуса - ДСП, оказался очень удобен в обработке, а электромагнитные помехи от приборов, которых так опасался, абсолютно не слышны. Но об этом статьи - сборка, настройка и испытание схемы.

Вниманию телезрителей предлагаю статью по теме построения однотактного лампового усилителя. Пожалуй, такая статья здесь единственная. По моему глубокому убеждению, однотактные усилители внимания не заслуживают. Т.е. для меня ответ на вопрос, что представляет собой усилитель, существует. Статья Александра Торреса написана квалифицированно, с пониманием проблематики и технических сторон реализации столь сложного проекта. Автор демонстрирует высокую культуру, лишь слегка обозначая сарказм, в отношении части телезрителей, называемых удифилами. Однако, на мой взгляд, проявление Александром подобной выдержанности и толерантности в адрес явной глупости (про крутость усилителя на 4 Вт), избыточно.

Двухкаскадный однотактный на 6СЗЗС без обратных связей. Усилителей на свете много. Какой из них лучше, какой хуже – однозначного ответа нет. Одни предпочитают транзисторные или микросхемные «мощные операционники», другие – только однотактники, третьи падают в обморок, если в усилителе находят хоть один полупроводниковый элемент (даже если это всего-навсего светодиод индикации – и вместо него норовят поставить неоновую лампочку или «зеленый глаз»). Четверых выворачивает наизнанку, если стоят параллельные лампы, транзисторы, конденсаторы или даже резисторы, но при этом выясняется, что они не понимают, чем отличается трансформатор от дросселя (случай реальный). Пятые – пытаются решить все проблемы подбором правильного направления серебряных сетевых проводов и «правильного» припоя. Описываемый усилитель не претендует на звание «супер-пупер» или «всех времен и народов». Я прекрасно отдаю себе отчет, что лампа 6СЗЗС хотя и хорошая, но не самая-самая. Но было интересно сконструировать усилитель, исходя из некоторых концепций. Хотя «лучшая концепция – это отсутствие всякой концепции» (С) перефразированный А.Клячин, тем не менее, были высказаны следующие пожелания: 1.Обойтись без обратных связей, даже местных. 2.Минимум каскадов усиления. 3.Обойтись без электролитических конденсаторов в цепи сигнала (кроме стоящих по питанию – они ведь тоже находятся в сигнальной цепи). Получить достаточно высокую мощность для однотактника (15-18вт), чтобы обеспечить достаточную перегрузочную способность и малый уровень искажений на обычной для комнаты громкости (4-5Вт на акустике, с чувствительностью 88-92дБ). Обойтись минимумом моточных изделий, а те, без которых нельзя – максимально простые.

Мощный стабилизаторный триод 6СЗЗС отличается от большинства других триодов своим огромным током анода. Это обуславливает большую любовь к построению бестрансформаторных усилителей, или OTL, на этой лампе. К сожалению, ни одного нормально звучащего ОТЛ мне пока услышать не посчастливилось, но возможно повезет в будущем. Однако, его недостатком, кроме большой мощности накала, является большая тепловая инерция, температурная нестабильность, особенно при высоком сопротивлении утечки в цепи сетки. Проявляется это в том, что при использовании фиксированного смещения (рисунок внизу слева) вследствие изменения температуры, напряжений и большой тепловой инерции - при максимальном использовании лампы (т.е. близкой к максимальной мощности на аноде – 55-60Вт) нередко наблюдается лавинный саморазогрев лампы. Встречается много утверждений, типа «все это чепуха, я сделал и ничего не случилось». Но, как правило, или при этом использовалась 6СЗЗС с мощностью на аноде 40-45Вт, или это был Лофтин-Уайт (усилитель с непосредственными связями), или же «просто повезло». Есть также индивидуумы, использующие эту лампу с половиной накала и большим «недогрузом». У них тоже она не идет «вразнос», но мне всегда их хотелось спросить – а зачем вам при этом 6СЗЗС? Есть много других ламп.

Справедливости ради замечу, что и мне попадались нормально живущие с фиксированным смещением ламп (особенно 6СЗЗС-В) даже при мощности 70-80Вт на аноде, но немало попадалось и таких, которые «шли вразнос» уже при 50Вт. Есть у меня одна уникальная лампа, которая уходит в лавинный саморазогрев, как только мощность превышает 63-64Вт. Даже с использованием описываемого ниже «автофикса», эта лампа «улетала» в ток величиной 1 ампер, при смещении на сетке минус 100В! Поэтому наиболее часто используют автоматическое смещение (рисунок справа), которое дает прекрасную стабилизацию режима работы лампы. Но, как и в «Золотом правиле механики» - выигрываем в силе, проигрываем в расстоянии. Вместе со стабилизацией режима, мы получаем резистор в катоде, на котором рассеивается большая мощность (порядка 20Вт) и местную обратную связь, для устранения которой – резистор необходимо шунтировать конденсатором большой емкости. В случае 6СЗЗС, работающей при токе 300мА и смещении 70В, резистор 230Ом рассеивает 21Вт. И ему требуется электролитический конденсатор, импеданс которого не больше 1/10 от сопротивления резистора на нижней рабочей частоте. В данном случае – это не менее чем 330мкФ на 100 вольт, лучше же использовать 1000мкФ на 100В в сочетании с пленочным конденсатором 1-10мкФ.

Какие еще могут быть варианты? Схемы с непосредственной связью и с переходными трансформаторами могут помочь, но они обладают своими недостатками. Достоинствами фиксированного смещения являются, кроме отсутствия резистора и конденсатора в катоде лампы, еще отсутствие потерь (нагрева) этого резистора и легкость регулировки смещения простым маломощным подстроечным резистором. В случае автосмещения – ток покоя лампы можно изменить только изменением величины мощного резистора в катоде выходного каскада.

Много десятилетий назад, была придумана схема последовательного автосмещения. От обычного автосмещения она отличалась тем, что резистор стоял ДО фильтрующего конденсатора блока питания. Поскольку падение напряжения на нем зависит от тока через лампу, то и происходит стабилизация. Нужно только выделить постоянную составляющую, т.к. через резистор идет пульсирующий ток выпрямителя. Олег Чернышев (Ярославль) предложил брать напряжение с резистора через диод, соорудив, таким образом, пиковый детектор, этим удалось уменьшить сопротивление резистора, выделяемую на нем мощность (примерно в 2-3 раза), и уменьшить пульсации напряжения смещения. Я пошел на небольшое увеличение сопротивления резистора и рассеиваемой на нем мощности до 11-12Вт (но все же – оно меньше чем для обычного автосмещения) для увеличения напряжения, снимаемого с резистора, добавив в схему подстроечный резистор. В итоге, получившаяся схема обладает следующими достоинствами: -отсутствие катодного резистора и конденсатора, - легкость установки желаемого тока лампы обычным мелким подстроенным резистором. Стабилизация режима, поскольку это не фиксированное, а автоматическое смещение (Ucm зависит от тока лампы). Есть еще одно достоинство предлагаемой схемы – резистор автофикса стоит между выпрямителем и электролитом, тем самым ограничивая зарядный ток конденсатора, как во время включения (InRush Current), так и во время работы.

Существует другая возможность – использовать трансформатор тока, установленный в цепи переменного тока (во вторичной обмотке анодного трансформатора, перед выпрямителем. Возможна и его установка в первичной обмотке.) Такая схема еще больше снижает потери мощности во вспомогательных цепях, но требует более сильной фильтрации напряжения смещения, что может привести (и в некоторых случаях я это наблюдал) к самовозбуждению схемы на инфранизких частотах.

Следует заметить, что как схема автофикса, так и схема с трансформатором тока, в случае изготовления стереоусилителя, а не моноблоков, – требуют раздельных анодных обмоток и выпрямителей для каждого канала. Перейдем к рассмотрению полной схемы усилителя. Выходной каскад построен по схеме «автофикс» с регулируемым смещением. Режим работы каскада – 210В на аноде при 0,28А. При желании, можно его изменить подстроенным резистором в обе стороны (зависит от конкретной лампы). При изменении смещения меняется как ток, так и анодное напряжение (из-за изменения падения напряжения на резисторе автофикса). Резистор 1Ом в цепи катода 6СЗЗС служит для измерения тока, после настойки его можно закоротить (хотя он никому не мешает). Выходные трансформаторы секционированные – 4 секции первичной обмотки (790 витков, в сумме, провод 0,85мм), между которым 3 секции вторичной обмотки (по 36 витков в каждой), которая намотана плоским литцендратом большого (2кв.мм) сечения – это позволило обойтись без запаралеленных секций и уйти от уравнительных токов. Во вторичной обмотке сделан отвод от одной секции, это позволяет включать трансформатор тремя различным способами, получая с нагрузкой 8Ом величину Ra – 0,43kОм; 0,96kОм и 3,8кОм. Последнее значение вряд ли имеет практический смысл (хотя целиком вписывается в «концепцию» Юрия Макарова – Ra/Ri=20-30), но может быть интересно в качестве эксперимента, а также при работе с 4-х омной акустикой. Сопротивление 430Ом на первый взгляд мало, но с другой стороны – «соотношение Ra/Ri не следует делать более 4-5, поскольку ухудшается динамика каскада, а нелинейные искажения, при уходе выше этого соотношения уменьшаются незначительно (с) Анатолий Манаков». В реальности – все зависит от акустических систем (АС), как и многие SE без обратной связи, данный усилитель критичен к характеристике импеданса АС.

Сердечник выходного трансформатора – «двойной С-Core» из железа М5, сечение центрального керна 18кв.см., прокладка – 0,3мм. Трансформатор имеет индуктивность 4.5Гн, сопротивление первичной обмотки по постоянному току – 5.5Ом. Линейный участок намагничивания трансформатора простирается вплоть до тока 0,62А. С полным включением вторичной обмотки полоса частот трансформатора 9Гц-75кГц, а всего усилителя – 11Гц-53кГц (по уровню -3dB при напряжении 10В на нагрузке 8Ом), выходное сопротивление – около 2 Ом, искажение синусоиды (по осциллографу) на выходе начинается при мощности на нагрузке 15-18Вт. Коэффициент усиления – 13.

Поскольку целью являлось построение 2-х каскадного усилителя, то первый каскад (драйвер) должен обладать достаточным коэффициентом усиления, и большим запасом по размаху выходного сигнала. Используемая лампа 6Э5П, которую "открыл" для аудиоприменения Анатолий Манаков, при питании 350-400 В позволяет получить, в отсутствие выходного каскада, размах выходного сигнала +120В peak-to-peak.

Это примерно вдвое превышает максимально возможный сигнал +60-70 В р-р, который зависит от напряжения смещения выходного каскада. Эта лампа может быть включена как тетрод или как триод. В первом случае усиление даже избыточно (100-130), во втором – наоборот, недостаточно (30-40). В связи с этим, использована т.н. <ультралинейная> схема включения тетрода, в которой вторая сетка подключена к части анодной нагрузки. При указанных на схеме номиналах, эта схема имеет коэффициент усиления 60-70, что наиболее подходит для данного случая. В оригинальной схеме А.Манакова в аноде стоят одинаковые резисторы, и коэффициент усиления 45-50. Смещение драйвера может быть сделано несколькими способами – традиционное автоматическое смещение (резистор около 100 Ом, зашунтированный конденсатором 2000 мкФ в катоде, сеточный резистор при этом сидит на земле), фиксированное смещение батарейкой в цепи сетки и собственно фиксированное смещение. Последнее и было выбрано, поскольку нужно обойтись без конденсаторов в катодах всех ламп. Откуда брать напряжение (отрицательный источник) для фиксированного напряжения, не имеет большого значения. А поскольку такового не имелось – был и в драйвере использован «автофикс». Здесь его стабилизирующие свойства автоматического смещения не так важны, поэтому смещение выбрано общим для двух каналов. Аналогично питанию выходного каскада, в питании драйвера резистор автофикса также способствует уменьшению пиков зарядного тока электролитов блока питания.

Анодный блок питания входного каскада имеет 3-х ступенчатый фильтр, образованный сначала резистором автофикса и первым электролитическим конденсатором, затем последовательным резистором и вторым конденсатором, и в заключение – «электронным дросселем» на мосфете и большим, установленным параллельно выходному каскаду электролитическим конденсатором, зашунтированным пленочным. В выпрямителе используются быстрые диоды и противопомеховые фильтры (common mode, на схеме не показаны), предотвращающие попадание «мусора» из сети. Аналогичный «электронный дроссель» применен и в анодном питании драйвера. Накалы всех ламп питаются переменным током, для уменьшения фона – все накалы смещены на несколько десятков вольт вверх. Светодиод в цепи делителя смещения накалов использован для индикации. При таком построении блока питания, уровень фона на выходе составляет около 3мВ, что на АС с чувствительностью 90дБ, практически не слышно, даже если «вставить ухо в колонку». Эксперимента ради, я пробовал не меняя ничего в блоке питания, закорачивать электронные дроссели выходных каскадов. При этом в АС появлялся небольшой фон, неслышимый уже с полуметра, но я все же рекомендую не отказываться от них. При повторении усилителя, следует учесть, что некоторые элементы не только лампы, также рассеивают определенное количество тепла – это резисторы автофикса и резисторы в анодной цепи драйвера. Их следует выбирать соответствующей мощности. Мосфеты электронных дросселей греются слабо, радиаторы им не нужны. Более чем достаточно привинтить мосфеты к металлическому шасси, а вот резисторам автофикса может понадобиться и радиатор. Панельки под 6СЗЗС лучше всего керамические, помните – они сильно нагреваются. Звучание усилителя получилось достаточно интересным, чувствуется большой запас мощности. Очень чистые и прозрачные ВЧ, прекрасно передающиеся СЧ и мягкие, ненавязчивые НЧ, но конечно – для передачи «взрывов» в кино этот усилитель годится меньше мощного транзисторного двухтактника. Благодарю Анатолия Манакова, Марка Фельдшера и других за помощь и консультации.

P.S. Уже после выхода статьи, была сделана вторая версия усилителя. Ее основные отличия: Увеличена емкость конденсатора С5 до 2000мкФ. Число витков первичной обмотки выходного трансформатора увеличено до 1200. Использованы раздельные трансформаторы анодного питания (Т2) для двух каналов. Остальные отличия не принципиальны, и связаны с другой механической конструкцией усилителя. Александр Торрес, Гонгконг.

Замечательная статья. Понятная цель, разумные средства. Публикацию подготовил, и немного отредактировал

Евгений Бортник, Красноярск, Россия, 2016

Это разработка где-то конца 80-х. За это время показала себя достойно и универсально: годится как для любителей качественного звука (сочинял для себя), так и для музыкантов, которым нужна мощность.

Краткое лирическое вступление. В своё время был очень популярен усилитель, опубликованный в журнале "Радио" 72г. Я тоже повторял эту схему. Недостатки её известны многим, кто её повторял: невысокая линейность, слабая устойчивость на ИНЧ, недостаточная устойчивость по ВЧ (от чего в схему введен корректирующий кондюк), узковатый частотный диапазон, и ещё что-то, чего сейчас не припомню. И главное - звучание оставляло желать лучшего.

Такого у себя дома я терпеть не мог: уши свои - не казённые:) Первое, с чего я начал модернизацию - замена выходного транса. Изменения, внесенные в выходной транс напрашивались сами собой - ужесточить связь обмоток обратной связи (ультралинейных) с остальными обмотками, чем уменьшить Кг на высших частотах, и улучшить частотные и фазовые характеристики выходного каскада. В том варианте, что я применил в новой конструкции удалось расширить частотный диапазон, повысить устойчивость на ВЧ, понизить выходное сопротивление. Звучание заметно улучшилось, но теперь вся схемотехника (клон т.н. "схемы Вильямсона") стала казаться притянутой в Hi-Fi за уши - выполнена как-то "в лоб", слабым звеном оставались слабая устойчивость с ООС на инфранизких частотах, повышенные нелинейные и частотные искажения (особенно на ВЧ).

Дальнейшее усовершенствование вылилось в полному отказу от этой схемы. Было перепробовано много разных схемотехнических решений. Попытки найти оптимальный вариант привели к тому решению, который предлагаю. Hа входе я применил каскодный УН с высокой линейностью, далее - фазоинверсный каскад с разделённой нагрузкой, имеющий наибольшую линейность. При этом связал я их непосредственно, чтобы уменьшить фазовые сдвиги по пути прохождения сигнала. На выходе, правда остался знакомый ультралинейный выходной каскад с небольшими изменениями (с целью удобства наладки и повышения устойчивости), и, как уже говорилось с улучшенным выходным трансом. На схеме я условно разделил предварительные каскады, связка триодов в котором собственно и являются моим ноу-хау;), и выходной каскад, вместо которого можно присоединмть любой подходящий. При правильно изготовленном и налаженном усилке, максимальные амплитуды на управляющих сетках выходных ламп должны быть не менее 80В в нагрузке 47к. А это дало возможность полностью раскачать 6П45С. И что важно, при всех своих достоинствах схема оказалась даже проще той, от которой пришлось уходить.

В результате получился усилитель со звучанием, которое (при должных мерах), вполне может претендовать на hi-end ;) Усилитель абсолютно устойчив, поэтому его можно использовать как с глубокой ООС, так и вообще без неё - линейность всех каскадов обеспечивает малые искажения и с разомкнутой петлёй ООС.

Из двух 6Р3С, мне удавалось получить >150ватт, из двух 6П45С - >220 ;), а в варианте с сеточными токами (специально для музыкантов) - 400ватт пиковой мощности! Но та схема уже заметно отличается от приведённой.

Подробные параметры усилителя я сейчас привести не могу - давно не мерял. Тем, кому нужен звук а не параметры, информации для повторения я дал достаточно, а если очень нужно, могу (хоть и очень в лом) перемерять. Для журнала перемерял бы наверное. А тут и так сойдёт:o)

Что касается наладки, то она проста:

  1. собрать стандартную схему измерения параметров;
  2. отключить ООС;
  3. включить усил и прогреть катоды;
  4. резисторами R10 и R11 выставить токи покоя вых. ламп 30...60мА (0,06...0,12В на катодах), но обязательно одинаковыми;
  5. без подачи сигнала на вход, регулем R2 выставить на катоде фазоинвертора 105В;
  6. подать сигнал на вход до получения напряжения на нагрузке 15 вольт (для 6-омного варанта);
  7. резистором R9 выставляется минимум 2-й гармоники на выходе;
  8. восстановить ООС (не обязательно).

Пункт 7 можно пропустить, если заменить R8 и R9 на один, сопротивлением 12к (это может на качество даже никак не повлиять, особенно с ООС).

Для питания усилителя понадобились дополнительные напряжения: 410В(10мА/канал) и стабилизированное 68В (б/т). На схеме показан идин из вариантов их получения из имеющихся. Здесь можно сделать по-разному. У меня, например, есть источник стаб. +220В для питания предусилителя, так я +68 получил делителем.

В своё время схема была окутана коммерческой тайной:). Теперь please - пусть кто хочет попробует. Повторюсь, что связка УН-ФИ универсальна, и может быть использована для раскачки различных выходных PP каскадов (триодных, пентодных, класса А, АВ). Для каждого конкретного случая возможно придётся произвести перерасчёт некоторых элементов, что делается очень легко. В этом я могу оказать помощь нуждающимся.

P.S: Подобной переделке хорошо поддаются усилители "Прибой" - качество заметно улучшается.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Радио-лампа 6Н1П 2 В блокнот
Радио-лампа 6П45С 2 В блокнот
С1, С5, С6 Конденсатор 1 мкФ 3 В блокнот
С2 Электролитический конденсатор 47 мкФ 1 В блокнот
С3 Конденсатор 0.1 мкФ 1 В блокнот
С4 Конденсатор 0.047 мкФ 1 В блокнот
R1 Резистор

220 кОм

1 0.5 Вт В блокнот
R2, R9 Подстроечный резистор. 4.7 кОм 2 В блокнот
R3 Резистор

100 Ом

1 0.5 Вт В блокнот
R3 Резистор

100 кОм

1 2 Вт. По ошибке в схеме два резистора именуются как R3 В блокнот
R4 Резистор

2 МОм

1 0.5 Вт В блокнот
R6 Резистор

1 МОм

1 0.5 Вт В блокнот
R7 Резистор

12 кОм

1 2 Вт В блокнот
R8 Резистор

10 кОм

1 0.5 Вт В блокнот
R10, R11 Подстроечный резистор 22 кОм 2 В блокнот
R12, R13 Резистор

47 кОм

2 0.5 Вт В блокнот
R14, R15 Резистор

1 кОм

2 0.5 Вт В блокнот
R16, R17 Резистор

22 кОм

2 1 Вт В блокнот
R18, R19 Резистор

2 Ом

2 2 Вт В блокнот
R20 Резистор

2.7 кОм

1 1 Вт В блокнот
R21, R22 Резистор

68 Ом

2 2 Вт В блокнот
Розрядник 1

Андрей ВРУБЛЕВСКИЙ, Дмитрий ЧУМАНОВ


В последние годы для всего мира характерен устойчивый и интерес к однотактным усилителям. Ими восторгаются, их критикуют, о них спорят. Появилось немало и любительских конструкций, и промышленных моделей, в том числе в самых высоких (до сотен тысяч долларов) ценовых категориях. Можно даже сказать, что мир разделился на два лагеря - ярые поклонники однотактной схемотехники и ее не менее ярые противники.

Сторонники однотактных усилителей указывают в первую очередь на их субъективно определяемые качества: особая чуткость, певучесть звучания, «музыкальность» (последнее слово приходится взять в кавычки, так как не всегда понятно, что именно под ним подразумевается). Доводы противников, напротив, основываются на самых что ни на есть объективных данных Это, как правило, невысокая мощность, ограниченный (как снизу, так и сверху) частотный диапазон, и высокий уровень измеряемых искажений. Можно, конечно, возразить, что фирма «WAVAC» выпустила 100-ваттный однотактный усилитель; что частотный диапазон усилителя «ML2» фирмы «LAMM Industries» составляет 3-80000 Гц без ООС, но, боюсь, эти аргументы покажутся неубедительными, если вспомнить, какой ценой (30-35 тыс. долларов) это все достигнуто.

На фото модный усилитель фирмы «WAVAC» для тугих кошельков

А потому спустимся с небес на землю и попробуем ответить на вопросы, актуальные для большинства любителей музыки: какая мощность реально необходима для прослушивания в домашних условиях и какой приемлемый уровень нелинейных искажений? Кажется, было бы естественным сказать, что, дескать, мощности чем больше, тем лучше, а искажений, разумеется, наоборот. Увы, на деле все не так просто, Высокая мощность достигается переводом выходного каскада в класс АВ, что вызывает неизбежный рост искажений всех видов, а заметного, начиная с нескольких процентов, уменьшения этих искажений можно добиться, только прибегнув к глубокой отрицательной обратной связи, про которую до нас было написано достаточно, чтобы понять - качество звучания с ее помощью повысить не удастся, можно лишь заменить одни искажения другими. Банальный пример: 0.003% гармоник при 100 Вт мощности - цифры, типичные даже для относительно дешевого транзисторного усилителя. Так с чем же связано бедное, даже убогое, лишенное всякой эмоциональности звучание большинства таких усилителей?! За все в этом мире приходится платить, и я рамках одной ценовой категории вам неизбежно придется выбирать между мощностью и качеством.

Но все не так уж безнадежно. На вопрос о необходимой мощности убедительно ответил А. М. Лихницкий в своей статье «Мощность» . Согласно его выводам, акустическая система чувствительностью 90 дБ в паре с усилителем мощностью 10 Вт способна в комнате площадью 20 м2 создать звуковое давление, необходимое для полноценной передачи forte fortissimo симфонического оркестра. Господа аудиофилы, зачем же больше?

Теперь поговорим об уровне нелинейных искажений. Нам придется обратиться к некоторым выводам психоакустики, утверждающей, в частности, что на слух заметность нелинейных искажений для гармоник разного порядка неодинакова. Большинство исследователей сходятся на том, что 1% второй гармоники не заметят даже профессиональные эксперты, а основная масса испытуемых обнаруживает ее примерно с 1,8-3,5%. К сожалению, не совсем так обстоит дело с гармониками более высокого порядка. Согласно эмпирическим наблюдениям заметность на слух какой-либо гармоники прямо пропорциональна квадрату ее номера. Исходя из этого. 0,1%. скажем, десятой гармоники и 2.5% второй вызовут соизмеримое (хотя и по-разному проявляющееся) ухудшение качества звучания. Более того, одни гармоники могут маскировать присутствие других, так, в частности, третья гармоника становится менее заметной при наличии второй. Спектральное сочетание плавно спадающих по уровню гармоник (вторая наибольшая, третья меньше, четвертая еще меньше и т. д.), является для нашего слуха наиболее благозвучным. Более подробно об особенностях слухового восприятия можно прочитать в . мы же отметим только, что приводимые в паспорте сведения о совокупном уров­не нелинейных искажений без указа­ния спектра этих искажений ровным счетом ничего (!) не говорят о качестве звучания.

Предположим, мы вас убедили, и мощность в несколько ватт при не­скольких процентах гармоник вас устраивает, но почему обязательно при однотактной схеме? Заглянем в старый учебник по ламповой схемотехнике . Там черным по белому прописаны четы­ре основных преимущества двухтактных ламповых выходных каскадов: - отсутствие постоянного подмагничивания в выходном трансформаторе: - увеличенная (в классе А как минимум вдвое) выходная мощность; - компенсация четных гармоник в выходном сигнале; - пониженная чувствительность к пульсациям питающего напряжения.

Учебник был написан около полувека назад, и, хотя законы физики за это время не изменились, стоит задуматься, к чему мы стремимся, применяя эти законы. При внимательном прочтении знакомых еще со студенческих времен страниц можно заметить, что основным стремлением схемотехники в те годы было получение все более высокой мощности при уменьшении габаритов и веса. Сейчас мы ставим перед собой обратную задачу - получение максимально достижимого качества звучания, невзирая на габариты и вес. Так может попробуем пойти обратным путем - от класса В к классу А, от двухтактного каскада к однотактному? Давайте рас­смотрим так называемые недостатки однотактных выходных каскадов.

1. Постоянное подмагничивание в выходном трансформаторе. Оно не только уменьшает индуктивность первичной обмотки, но и заставляет железо рабо­тать по частному циклу гистерезиса (го­воря не вполне технически грамотно, в «чистом классе А»), то есть в режиме с повышенной линейностью, особенно на малых сигналах, без той вроде бы загла­женной, но все-таки присутствующей «ступеньки» при переходе через ноль, что присуща двухтактному режиму работы (может быть, с этим связа­но главное преимущество однотактников - потрясающая микродинамика?). Уменьшение индуктивности компенсировать достаточно просто - увеличив габариты и вес, мы ведь договорились, что они для нас не главное.

2. Выходная мощность двухтактного каскада, работающего в классе А. равна выходной мощности однотактного каскада, построенного на той же паре ламп, но включенных параллельно. Класс АВ мы здесь не рассматриваем ввиду невозможности его реализации без ООС.

3. Компенсация четных гармоник в двухтактном каскаде в силу указанных выше особенностей слуха приводит чаще всего к субъективному ухудшению качества звучания. Не случайно некоторые разработчики, как у нас, так и за рубежом, пытаясь приблизить звучание своих двухтактных аппаратов к звучанию однотактных путем перекоса в фазоинверторном каскаде, подмешивают к сигналу вторую гармонику. Увы, это не решает всех проблем, связанных с двухтактниками.

4. Повышенная чувствительность однотактных каскадов к пульсациям питающего напряжения преодолевается в результате простого увеличения емкости фильтрующих конденсаторов блока питания, что при их нынешних размерах и стоимости не представляет сложности.

Вот мы и пришли к неожиданному выводу: большинство декларируемых недостатков однотактного усилителя при ближайшем рассмотрении оказываются его достоинствами, остальные же на сегодняшний день легко устранимы за счет увеличения габаритов, веса, и, как следствие, стоимости. Небольшая мощность при больших габаритах, весе и стоимости - насколько это приемлемо, пусть каждый решит для себя сам. Нам же представляется вполне естественным, что усилитель высокого класса, способный в соответствующем тракте доставить ни с чем не сравнимое наслаждение любителю музыки, имеет внушительные размеры и вес и стоит больше, чем посредственный аппарат, хотя бы и с мощностью на порядок выше.

Конечно, бывают ситуации, когда без высокой мощности не обойтись, например, при озвучивании дискотеки, но в домашних условиях грамотно спроектированный однотактный триодный усилитель без обратной связи мощностью 5 - 10 Вт с типичным уровнем искажений около 5-6% при полной мощности (и соответственно около 1.0% при мощности 1 Вт), работая на акустическую систему чувствительностью 90 дБ и более, способен обеспечить весьма высокое качество звучания, зачастую не­достижимое для аппаратов, использующих какую-либо другую схемотехнику.

Внимательный читатель может отметить, что большая часть сказанного выше в равной мере относится и к транзисторным однотактным усилителям. Совершенно верно, в мире существует и такое направление, его яркими представителями являются усилители серии «Pass Aleph» Нельсона Пасса. Мы не против транзисторов, но все же заметим, что на сегодняшний день ламповый триод является самым линейным усилительным элементом, и с его помощью получить высокое качество звучания, во всяком случае, проще. Подтверждением этому служит и тот факт, что в самых высоких ценовых категориях мы видим только ламповые однотактники.

Ну, хорошо, скажете вы, допустим. Но какое отношение все это имеет к большинству любителей музыки, а нашей стране, не имеющих возможности приобрести не только готовый усилитель «Саrу» или «Audio Note», но и необходимые для их построения компоненты - лампы 300В производства «Western Electric», трансформаторы «Tango», конденсаторы «Black Gate» и «Multicap», серебряные провода «Kirnber Cable»? А вот какие. Тем из вас, кто знает, за какой конец брать в руку паяльник, мы предлагаем самостоятельно собрать из доступных деталей простой в изготовлении и на­стройке ламповый усилитель, способный, тем не менее, продемонстрировать все преимущества однотактного лампового звука, о которых мы так много говорили.

Схема. Однотактный ламповый усилитель из доступных деталей

Из возможных вариантов мы предпочли усилитель на выходных лучевых тетродах 6ПЗС в триодном включении. Этот аппарат явился прототипом серийной модели «Avant Electric Nostalgia», отличающейся от него некоторыми до­работками, вызванными, в частности, технологическими требованиями серий-нот производства.

Основные технические параметры усилителя:
выходная мощность 7 Вт при коэффициенте нелинейных искажений 6%,
чувствительность 0,4 В,
полоса рабочих частот на полной мощности не хуже 12 Гц - 30 кГц без ООС.

Выходная лампа 6ПЗС была выбрана нами, во-первых, за ее доступность и низкую (около 20 рублей на питерском радио рынке) цену. Во-вторых, за достаточно высокую линейность в триодном включении я многообещающий спектр гармоник (относительно высокая вторая гармоника и низкая третья). Напомним, что эта лампа, точнее ее прототип 6L6, разрабатывалась специально для ис­пользования в звуковых трактах. И в-третьих, за ее теплое (тут самое время вспомнить про спектр гармоник) и - все-таки не обойтись без этого слова - «музыкальное» звучание, даже в сравнении с такими серьезными соперниками, как EL34 и 6550, Два относительных не­достатка этой лампы в триодном вклю­чении - небольшую выходную мощ­ность (3,5 Вт) и достаточно высо­кое внутреннее сопротивление (около 1.5 кОм) - мы преодолели, включив две лампы параллельно. Следует заметить, что среди российских радиолюбителей распространено необоснованное, на наш взгляд, мнение о недопустимости параллельного включения ламп. Не желая углубляться в дискуссию на эту тему, привезем простой пример. Один из самых дорогих (как-никак 330 тысяч долларов) усилителей всеми уважаемой фирмы «Audio Note», а именно «Gaku-Оn», имеет на выходе две включенные параллельно лампы, что вовсе не мешает его счастливым обладателям наслаждаться музыкой. Так или иначе, включив параллельно лампы 6ПЗС, мы полу­чили внутреннее сопротивление 750 Ом и 7 Вт триодной мощности. Ну, чем не «трехсотка»?!

Рассмотрим схему подробнее. Входной каскад, он же драйвер, вы­полнен по схеме с динамической на­грузкой (SRPP) на одном из лучших отечественных малосигнальных триодов 6Н9С, Применение SRPP объясняется не каким-то нашим особым расположением к таким каскадам, а тем, что мы попробовали разные варианты (один триод с анодной нагрузкой, параллельное включение двух триодов и т. п.) и остановились на SRPP. как на обеспечившей наилучшее, по нашему мнению, качество звучания. Выходной каскад, как упоминалось выше, выполнен на двух лучевых тетродах 6ПЗС в триодном включении. Для того чтобы свести к минимуму нелинейные искажения, выходные лампы подобраны парами по анодному току и крутизне с точностью 1,5% и при необходимости заменяются тоже парами. Тем, у кого нет возможности подобрать лампы, советуем не расстраиваться и ис­пользовать те лампы, которые есть (желательно все же из одной партии), так как разброс параметров ламп приводит к росту в основном второй гармоники, что не должно радикально ухудшить звучание. Выбранные нами режимы ра­боты выходных ламп могут, на первый взгляд, вызвать недоумение. В частности - напряжение на второй сетке, почта на 100 В превышает величину, указанную в справочнике, В свое оправдание мы сошлемся на статью , где доказывается возможность применения пентодов и лучевых тетродов в триодном включении с превышением некоторых справочных режимов без существенного снижения ресурса работы ламп.

Наш многолетний опыт работы с лампами это подтверждает, к тому же стоимость 6ПЗС не столь велика (в отличие от, скажем, 300В), и замена даже всего комплекта ламп один раз в несколько лет вряд ли заметно скажется на чьем-то бюджете. Нагрузкой выходного каскада служит трансформатор.

Выходной трансформатор , конечно же, является важнейшим элементом конструкции. От него зависит, пожалуй, не меньше, чем от выходной лампы. В нашем варианте он выполнен на Ш-образном сердечнике из трансформаторной стали толщиной 0,35 мм (вполне подойдет ШЛ-сердечник на стали Э310-330), ширина среднего стержня 25 мм, высота табора 40 мм, Первичная обмотка состоит из четырех секций по 510 + 1190 + 1190 + 510 витков провода ПЭВ или ПЭТВ диаметром 0,28 мм. Между ними расположены три секции вторичной обмотки по 216 витков провода диаметром 0,71 мм. От 130-го витка можно сделать отвод для 4-омной нагрузки. Все секции первичной обмотки соединены последователь­но, вторичной - параллельно. Между обмотками проложена конденсаторная бумага (можно использовать и обычную бумагу) толщиной 0.3 мм. После намотки катушка пропитана техническим воском (смесь парафина и перелина). Сердечник собран: Ш-пластины и I-пластины отдельно, между ними с по­мощью пластины из изолирующего материала выставлен зазор 0.25 мм.

Это не единственно возможная конструкция выходного трансформатора. Вполне допустимо использование других конструкций, например, в последние годы получил распространение двух катушечный вариант па ПЛ-сердечнике, имеющий определенные достоинства (впрочем, как и недостатки), В таком случае рассчитывать трансформатор придется самому. На­помним, что необходимые для расчета сведения вы можете почерпнуть в , а также укажем основные параметры. Прежде всего, это сопротивление первичной обмотки по переменному току 2,5-3.0 кОм, а также ток постоянного подмагничивания не менее 120 мА. Единственное предостережение: не используйте сердечники с площадью среднего стержня менее 10 см2 (габаритной мощностью менее 150 Вт), иначе вряд ли вы получите приемлемые характеристики па низких частотах.

Блок питания собран па кенотроне 5ЦЗС , что не случайно. Практика показывает, что кенотронное питании способно существенно повысить качество звучания усилителя, какие бы полу­проводниковые диоды вы до этого ни использовали. Неслучайно в самых дорогих моделях применяются именно кенотроны. Для силового трансформа­тора мы использовали магнитопровод Ш25×50, первичная обмотка содержит 770 витков провода ПЭВ диаметром 0,63 мм, повышающая обмотка - 1340 - 1340 витков провода диаметром 0,315 мм, накальные обмотки - соответственно 19 витков провода 1,25 мм для питания кенотрона, 24 витка того же провода для питания накала выходных ламп, и 24 витка провода 0,71 мм для питания накала входных ламп, Можно использовать и другой магнитопровод от трансформатора мощностью не менее 150 Вт, произведя расчет самостоятельно.

Все детали установлены на алюминиевом шасси и соединены между собой с помощью навесного монтажа. Старайтесь максимально использовать выводы самих элементов: там, где их не хватает, применяйте провод МГТФ-0.35, особое внимание уделите «земляным» цепям. Основные требования к монтажу: провода должны быть по возможности короткими и ни при каких условиях не допустимы замкнутые контуры, иначе у вас получится не усилитель, а радиоприемник. Собранная без ошибок схема наст­ройки не требует. Желательно только проконтролировать с помощью тестера напряжения и токи в указанных точках. Если измеренные значения отличаются от приведенных на схеме не более, чем на 10%. - все в порядке. Грубые отличия, скорее всего, указывают на ошибку в монтаже или на неисправность какого-либо элемента.

Перед первым включением проверьте монтаж самым тщательным образом. Это избавит вас от острых ощущении. Если при включении ваш усилитель не подал сигналов тревоги (запах гари, искры, громкие щелчки и т. п.), дайте ему прогреться 10-15 минут и приступайте к измерениям.

При правильном монтаже «земляных» цепей уровень фона в ваших АС должен быть достаточно низким. С акустической системой чувствительностью 90 дБ он слышен, только если ухо под­нести вплотную к низкочастотному динамику В противном случае придется поэкспериментировать с расположением деталей и проводов, что иногда может занять даже несколько дней. Но, так или иначе, это решаемая задача, и, следовательно, вы с нею справитесь.

Теперь затронем такой больной вопрос, как типы применяемых элементов . Почему больной? По этому поводу нам приходилось читать и слышать прямо противоположные мнения, начиная с то­го, что наши отечественные компоненты ничем не хуже (а то и лучше) самых дорогих и престижных зарубежных, и кончая тем, что без «Black Gate» и «Multicap» нечего даже пытаться получить приличный звук. Подробное рассмотрение этих вопросов выходит за рамки статьи, и мы ограничимся лишь некоторыми частными рекомендациями, основанными на нашем личном опыте.

Типы элементов, указанные на схеме, гарантируют вам некоторый начальный уровень качества, причем вполне сравнимый с присущим некоторым недешевым зарубежным моделям. А дальше, исходя из ваших вкусов и возможностей, попытайтесь подняться на более высокий уровень. Только не требуйте от этой схемы слишком многого, и она вас не разочарует. Итак, начнем по порядку.

Потенциометр, стоящий на входе, способен радикальным образом повлиять на качество звучания. К сожалению, достойной заменой дорогостоящему «ALPS» может стать разве что ступенчатый аттенюатор, скажем, на основе отечественных герконов с золочеными контактами.

Не меньшее влияние на звук оказывает и замена переходной емкости. Если у нас есть возможность, советуем попробовать «Multicap RTX» или «Jensen», известные не менее, чем «Audio Note». Они звучат весьма по-разному, но каждый из них, на наш взгляд, заслужил свою высокую репутацию (и высокую стоимость). При всем пашем патриотизме мы не можем согласиться с теми, кто утверждает, будто наши К40У-9 (КБГ, ФТ, ФГТИ и многие другие) лучше (как вариант - не хуже), чем выше­названные «Multicap», «Jensen» и т. п., Предполагаем, что заявления такого рода вызваны недостаточно высоким качеством используемых при тестировании звуковых трактов.

В блоке питания прекрасно зарекомендовали себя наши МБГО (МБГВ, МБГН, МБГЧ, еще лучше КБГ-МН и т. п.), если закрыть глаза на то, что они займут полкомнаты. Несмотря на наше бесконечное уважение к «Black Gate» серии «WKZ», язык не повернется рекомендовать их в силу запредельной стоимости. Советуем приберечь их для более продвинутых конструкций, а сю­да поставить что-нибудь попроще, на­пример «Rubicon» или «Nichicon».

И, наконец, если для монтажа вы прибегнете к какому-либо OFC-проводу известной фирмы (на наш вкус) и припою «WBT» или «Audio Note», хуже не станет.

Несколько слов по поводу акустических систем, которые могут использоваться с этим усилителем. Говорят, что только высокочувствительные (95 дБ и выше) акустические системы способны раскрыть возможности маломощных ламповых усилителей. Бесспорно, чем выше чувствительность ваших АС, тем меньшая мощность требуется от усилителя для создания одинакового уровня звукового давления и тем меньше, соответственно, будут искажения. Но вот беда, не всегда более чувствительная акустическая система оказывается лучшей по звуку.
Как же быть? В домашнем комплекте одного из авторов описываемый усилитель длительное время работал с акустическими системами на динамических головках «Peerless» чувствительностью 88 дБ, воспроизводя музыку различных жанров, включая хард-рок на повышенной громкости, и проблем с передачей динамических контрастов не было. На выставке «Российский Hi-End 2000» усилитель «Nostalgia» демонстри­ровался в комплекте с акустическими системами чувствительностью 87 дБ в зале площадью никак не менее 50 м2 и к изумлению многих, к нашему в том числе, на большинстве фонограмм он смог обеспечить необходимую громкость, не заходя в «клиппинг». Так что ес­ли предельная громкость не является для вас главным критерием оценки качества звучания, используйте ту акустическую систему, которая у вас есть, и, возможно, вы будете приятно удивлены. На самом деле удивляться не стоит, субъективное восприятие громкости звучания ламповых усилителей существенно отличается от восприятия громкости транзисторных. Наиболее часто называемая субъективная оценка мощности "Nostalgia"- 35-40 Вт. Надеемся, что развеяли ваши сомнения.

Существует другая проблема, на наш взгляд, не менее важная. Сочетание высокого (3 Ом) выходного сопротивления усилителя с высокой добротностью акустической системы иногда может привести к нежелательному подъему на низких частотах, попросту говоря, к гудению. В подобных случаях обвинение чаще всего падает на усилитель, хотя нам кажется, что акустическая система виновата не меньше. Точнее, это проблема взаимного согласования усилителя и акустической системы. Существует не­сколько способов ее решения. Наиболее простой - введение неглубокой обрат­ной связи, уменьшающей выходное с­противление усилителя до приемлемого уровня. Как же так, скажете вы, ведь мы только что отказались от обратной связи по идейным соображениям. Что ж, в данном случае мы предлагаем пойти на компромисс, учитывая, что в большинстве случаев достаточно глубины ООС в 2-3 дБ. Но для убежденных противни­ков ООС приведем и более радикальное решение - самостоятельно изготовить акустическую систему с пониженной добротностью специально для эксплуатации с усилителями без обратной связи. Если такая перспектива вас не пугает, мы, со своей стороны, готовы опубликовать один из возможных вариантов конструкции подобной системы на страницах журнала.

Литература
1. Лихницкий А. Мощность. Часть 1. "АудноМагазин".N" 2 (7) 96.
2. Frankland S. Single-Ended Vs Push-Pull. Part 1. «Stereophile» 12/1996.
3. Цыкин Г. Усилители электрических сигналив. 1963,
4. Трошкин Н. Триод из подручных материалов. «Клacc А», октябрь 1997.
5. Цыкин Г. Трансформаторы низкой частоты. 1955.

Спецификация
Усилитель
R1 - МЛТ 0,5 470 кОм
С1 - 47 мкФ, 450 В
R2, R3 - МЛТ 0,5 1,5 кОм
С3 - 1000 мкФ, 6ЗВ
R4 - МЛТ 1 20кОм
С2 - 0,15 мкФ, 250В
R5 - МЛТ 0,5 220кОм
С4 - 300 пФ (К78)
R6, R10 - МЛТ 0,5 1,0кОм
R7, R11 - МЛТ 1 100 Ом
R8, R12 - МЛТ 0.5 22 Ом
R9 - ПЭВ 10 240 Ом
R13* - МЛТ 0,5 30-120* кОм
V1, V2 - 6Н9С
V3, V4 - 6ПЗС
С2 (К72 П6, К72 П9)
С1, СЗ (К50-27, К50-37, К50-42, Rubicоn, Nichicоn, Jamicon)

БЛОК питания
VI - 5ЦЗС
L1, L2 - 2,5Гн х 0.14 А
С1, С2, СЗ - 220 мкФ, 450 В
С4 - 47 мкФ, 100 В
R1 - МЛТ 1 300кОм
R2 - МЛТ 1 - 43кОм
C1, C2, СЗ (K50-27, К50-37, К50-42, Rubicon, Nichicon, Jamcon)

, г. Брянск

v-puzanov(dog)*****

Домашний высококачественный однотактный усилитель

мощности на лампах 6С19П и 6П31С.

Вашему вниманию предлагается ещё одна статья об однотактных усилителях мощности (три варианта). Как Вы уже поняли из заголовка статьи, усилители предназначены для прослушивания музыки в домашних условиях. Несмотря на простоту схем, они обеспечивает очень комфортное

и практически неокрашенное высококачественное звучание в небольших помещениях (до 25-30 квадратных метров). Чувствительность усилителей составляет от 0,8 до 1,7 вольта (в зависимости от конкретных экземпляров применённых ламп), что позволяет использовать для них, в качестве источника сигнала, линейный выход CD проигрывателя без предварительного усилителя. При этом выходная мощность (в зависимости от применённых ламп в выходном каскаде) составит от 2,5 Вт (для лампы 6С19П) до 4,0 Вт (для лампы 6П31С).

Более того, во всех вариантах применяется один и то же источник питания и моточные изделия (трансформаторы и дроссели), что облегчает выбор и практическую реализацию наиболее понравившегося варианта.

Должен отметить, что простота схем кажущаяся, и я попытаюсь, по мере изложения, убрать все «подводные камни», которые могут встретиться при повторении данных конструкций и объяснить особенности их работы.

В качестве лампы оконечного каскада, первых двух вариантов, выбран триод 6С19П. АСХ лампы приведена чуть ниже.

Несмотря на «стабилизаторное происхождение» - лампа достаточно хорошо работает в звуковых схемах, благодаря высокой линейности вольт амперных характеристик (ВАХ), малым искажениям и достаточно большой мощности рассеивания анода (11Вт). Кроме этого, лампа нейтральна по звучанию, т. е. не вносит никакой собственной окраски в исходный музыкальный сигнал, что очень важно для достоверного звуковоспроизведения.


К достоинствам можно также отнести относительно небольшое рабочее напряжение анодного источника, что позволяет в блоке питания использовать электролитические конденсаторы, рассчитанные на напряжение 250 вольт (а это относительно небольшие размеры и стоимость), и небольшой ток накала (1 ампер).

Важным достоинством лампы является также низкое внутреннее сопротивление, что позволяет использовать выходные трансформаторы с относительно малым сопротивлением первичной обмотки переменному току (Ra). Кроме этого, низкое внутреннее сопротивление существенно улучшает звукопередачу в низкочастотном диапазоне.

Суммарная входная ёмкость лампы 6С19П тоже мала, что облегчает выбор лампы драйвера (об этом поговорим подробнее чуть позже).

Сразу поясню, что эта ёмкость складывается из нескольких слагаемых:

1) Произведение проходной ёмкости (8 пФ) на динамический коэффициент усиления (около 2-х) плюс 1, иначе ёмкость Миллера.

2) Входная ёмкость лампы (6,5 пФ)

3) Ёмкость монтажа (8-10 пФ)

Таким образом, имеем 8*(2+1)+6,5+(8…10)=38,5…40,5 пФ

Для удобства дальнейших расчётов примем её равной 40 пФ.

Недостатком лампы следует признать достаточно большое напряжение раскачки, но эта проблема разрешима, если в качестве лампы драйвера применить триод с высоким коэффициентом усиления или пентод в штатном или триодном включении.

В качестве лампы предварительного каскада (драйвера) я предлагаю Вам попробовать триод или пентод. Звучание этих каскадов (и, как следствие, усилителей) будет разным, и Вы сможете выбрать вариант, наиболее полно соответствующий Вашим музыкальным предпочтениям.

В первом варианте, в качестве драйвера, выбран триод 6С4П.

Его динамический коэффициент усиления в данной схеме составляет 35-36 (в зависимости от экземпляра). Кроме этого, лампа характеризуется высокой крутизной, малыми шумами, а также низким внутренним сопротивлением, что для высококачественного звуковоспроизведения немаловажно. Про шумы и низкое внутреннее сопротивление, я думаю, всё понятно без объяснений, а вот про крутизну позволю себе сказать несколько слов.

Дело в том, что чем выше крутизна лампы, тем более постоянным является выходное сопротивление каскада, собранного на ней, а это, как Вы понимаете, способствует более равномерной звукопередаче всего частотного диапазона.

Недостатками ламп (как же без них) с высокой крутизной принято считать наличие микрофонного эффекта, а так же раннее (от -1,1 вольта) появление сеточных токов. Однако, на практике, оба этих недостатка оказываются не столь существенными.

Из достаточно большого количества ламп (более 30 шт.), мне не удалось найти хотя бы одну, с заметным микрофонным эффектом. Такие же результаты были и у моих друзей. Но, на всякий случай, я поставил ламповые панельки на амортизаторы , применив для этого силиконовый шланг вакуумного корректора для легкового автомобиля. Надеюсь, что каждый из Вас сможет легко придумать свой способ, исходя из собственного опыта и наличия различных материалов.

Про второй недостаток очень хорошо сказал Дмитрий Андронников (автор усилителя на RB300X, опубликованного в А., а также многих других конструкций) в личной переписке.


Уважаемые коллеги ! В усилителе на RB300Х(ГМ5Б) смещение входного каскада (он собран, как раз, на лампе 6С4П) в действительных условиях находилось в районе -1,5...-2,0 В. К слову, реально термоток сетки проявляется лишь при напряжениях выше - 0.4.В, да и то, его значение весьма невелико и при сопротивлении источника сигнала менее 10 кОм (это 50 кОм регулятор громкости в среднем, самом наихудшем, с этой точки зрения, положении) искажения, им вызванные, при амплитуде входного сигнала 1,5 В (смещение -1,7 В) не превышают -70 дБ, причем, в основном по четным гармоникам и с быстрым убыванием по номеру.-

Надеюсь, комментарии излишни, однако, чтобы перестраховаться, я выбрал смещение драйверного каскада 2,1 вольта. К слову сказать, выбирать смещение большим, чем 2,4 вольта, не следует, так как из-за веерной характеристики лампы появятся значительные искажения.

Во втором варианте, после многочисленных экспериментов и прослушиваний, в качестве драйвера, я выбрал пентод 6Ж8.

Лампа не дефицитна, и, с моей точки зрения, способна обеспечить отличное качество звуковоспроизведения. Использование пентода позволило вообще отказаться от электролитического конденсатора, шунтирующего катодный резистор, пагубно влияющего на звучание. Несмотря на это, драйверный каскад имеет усиление порядка 40-45, в зависимости от конкретных экземпляров ламп. Если нужно ещё большее усиление, можно увеличить номинал анодного резистора, вплоть до 100 кОм, соответственно пересчитав режимы каскада.

Лампа 6Ж8 работает в так называемом токовом режиме (ток покоя около 7,0 ма) в штатном, пентодном включении. Несмотря на то, что ток анода превышен примерно в два раза, суммарная мощность рассеивания составляет около 1 Вт, что значительно ниже предельной мощности (2,8 Вт), и отрицательного воздействия на лампу такое включение не оказывает.

Каскад обладает ясным, чистым звучанием, с отличной детальностью и динамикой. Утверждения некоторых скептиков о том, что пентод не может хорошо звучать, с моей точки зрения являются голословными. Попробуйте, может это и есть «Ваш звук».

Перейдём к схеме. На рис. 1 приведена принципиальная электрическая схема одного канала усилителя с драйвером на лампе 6С4П и блока питания для двух каналов.

Несмотря на то, что расчёт лампового каскада есть в различной литературе и в Интернете, у начинающих возникает много вопросов, связанных с этим расчётом. Поэтому я счёл возможным привести простой расчёт лампового каскада на триоде 6С19П. Используя этот расчёт, в качестве образца, Вы сможете сами легко рассчитать каскад на любой лампе. Разница между расчётом драйверного и оконечного каскада состоит лишь в том, что в качестве анодной нагрузки, в первом случае, будет резистор (у меня 8,1 кОм), а во втором – сопротивление первичной обмотки выходного трансформатора переменному току Ra.

Выходной трансформатор выбираю с Ra=2,4 кОм/8 Ом (далее Вы поймёте, почему 2,4кОм). Для расчёта используем семейство АСХ (амплитудно-сеточных характеристик) для лампы 6С19П. Их можно «скачать» с различных сайтов или взять из справочника. Поскольку в расчётах мы будем использовать данные, получаемые путем различных построений, постарайтесь, чтобы чертежи АСХ были достаточно крупными (так будет точнее).

На следующем рисунке Вы можете наглядно увидеть пример построения линии нагрузки, предложенный конструктором из Перми. Его данные чуть-чуть отличаются от моих, но на практике эти отличия будут не существенны.

Вначале строим вспомогательную линию нагрузки (на рисунке она не показана). Зная сопротивление первичной обмотки выходного трансформатора переменному току (в моём случае 2400 Ом) и произвольно выбранный ток, чтобы было удобнее считать (например, 0,1А), находим соответствующее напряжение по закону Ома. В моём случае 240 вольт. Соединяем точки 0,1А и 240В прямой линией – это и есть вспомогательная линия нагрузки. Реальная линия нагрузки будет всегда идти параллельно вспомогательной.

При выборе рабочей точки каскада наша основная задача состоит в том, чтобы получить от него максимально возможную выходную мощность при минимальных искажениях.

Здесь всё не совсем просто. Дело в том, что чётные гармоники для нашего с Вами слуха являются консонансными (благозвучными), а нечётные, с точностью до наоборот, диссонансными. Поэтому гораздо лучше иметь (с точки зрения звучания), например, 6% второй гармоники при 0,5% третьей, чем 3% второй и 2% третьей. Этот факт всегда нужно учитывать при построении реальной линии нагрузки для Вашего каскада.

Для каждой конкретной лампы, если нет опыта, придётся несколько раз строить линию динамической нагрузки (и, естественно, производить расчёт), изменяя при этом Ra (т. е. наклон линии) и выбирая смещение, до тех пор, пока расчётные значения мощности и искажений (особенно третьей гармоники) не станут оптимальными.

Вообще, максимальная выходная мощность достигается при условии Ra=2Ri, где Ra – сопротивление первичной обмотки выходного трансформатора по переменному току, а Ri – внутреннее сопротивление лампы. К сожалению, в этом случае слишком велики нелинейные искажения. Поэтому сопротивление первичной обмотки трансформатора Ra выбирают в пределах 3-5Ri (иногда до 7-10Ri), как компромисс между величиной нелинейных искажений и выходной мощности. Но нужно учесть, что мощность каскада снижается линейно, а коэффициент нелинейных искажений (КНИ) по экспоненте, со всеми вытекающими последствиями, поэтому существует понятие разумной достаточности. Кроме того, чрезмерное увеличение анодной нагрузки снижает динамику каскада.

Итак, рабочая точка имеет координаты Iаo=0,065А по оси Y и Uао=171В по оси X. Проводим линию динамической нагрузки через эту точку, строго параллельно вспомогательной линии нагрузки. Смещение я выбрал 56 вольт, а на рисунке коллеги из Перми оно получилось равным 52 вольтам. Это естественно, так как мы пользовались АСХ, взятыми из разных источников.

При пересечении линии нагрузки с кривыми Uсм=0 и Uсм=2Uо

получаем следующие координаты

Iа max=0.115A; Iа min=0.027A; Uа min=56V

Выходная мощность с учётом всех гармонических составляющих рассчитывается по формуле

0,9(Uао-Uаmin)(Iаmax-Iао)

Pвых = -- = 2,58Вт

Теперь определяем суммарный коэффициент гармоник с учётом всех гармонических составляющих.

Находим на графике точки пересечения линии динамической нагрузки с сеточными кривыми при Uc=1/2Uo (это кривая смещения -28V) и при Uc=1.5Uo (это кривая 84V) - получаем ещё 2 точки. Результаты записываем.

I1(при -28V)=0.086A

I2(при -84V)=0.042A

Гармонические составляющие анодного тока (практический интерес представляют вторая и третья гармоники) вычисляем по формулам

I1m=Imax+Imin+I1-I2/3=0,062

I2m=Imax+Imin-2Io/4=0.003

I3m=Imax-Imin-2(I1-I2)/6=0

Вычисляем соответствующие коэффициенты второй и третьей гармоники.

Кг2=(I2m/I1m)100%=4,84%

Кг3=(I3m/I1m)100%=0%

Надеюсь, что после приведенного расчёта Вам стало понятно, о чём я говорил выше. Коэффициент третьей гармоники, при Ra=2400 Ом, по расчёту получился равным 0%, к чему мы и стремились.

Конечно, Вы можете возразить, что реальные экземпляры ламп могут отличаться друг от друга и коэффициент третьей гармоники будет больше 0%. Да, с этим не поспоришь, но я абсолютно не сомневаюсь в том, что всё равно он будет небольшим.

Теперь пора определить коэффициент Альфа для этого усилителя.

Это очень важная величина, которая тесно связана с демпфированием акустики (об этом чуть ниже).

Коэффициент Альфа, есть отношение сопротивления первичной обмотки выходного трансформатора Ra (у меня 2400 Ом) к внутреннему сопротивлению выходной лампы строго в рабочей точке.

Находим его. Для этого продолжаем карандашом кривую сеточной характеристики -56 вольт вверх, чтобы получить точки при пересечении этой кривой и горизонтальных линий, ограничивающих рабочий диапазон «сверху» и «снизу». Из этих точек опускаем перпендикуляры на ось абсцисс.

Верхней точке соответствует 185V

Нижней точке соответствует 146V

Ток макс.=0,115А

Ток мин.=0,027А

Разница между этими напряжениями и токами позволит определить внутреннее сопротивление в рабочей точке.

Ri раб. точке=185-146/0,115-0,027=443 Ом

Альфа=Ra/Ri раб. точке

Вот теперь настал черёд объяснить, для чего может быть полезен вывод вторичной обмотки, рассчитанный на подключение нагрузки в 4 Ом (на схеме не показан).

Дело в том, что подключая акустику с сопротивлением 8 Ом к выводу выходного трансформатора, рассчитанного на подключение акустики, сопротивлением 4 Ом, Вы тем самым увеличиваете Ra ровно в два раза. То есть выходная лампа «видит» Ra, величиной уже не 2400 Ом, а 4800 Ом.

Естественно, альфа усилителя и коэффициент демпфирования, тоже увеличиваются в два раза. Таким образом, Вы можете выбрать вариант звучания, наиболее подходящий Вашим акустическим системам и Вашей комнате прослушивания. Понятное дело, что выходная мощность усилителя, при увеличении альфа, уменьшается, однако из-за возросшего коэффициента демпфирования, на слух изменения не очень заметны.

Если есть желание, Вы можете измерить реальное выходное сопротивление усилителя.

Для этого на середине звукового диапазона (например, 400-500 Гц) и на мощности 5-20% от максимальной, измерить переменное напряжение без нагрузки и с нагрузкой. Формула следующая.

Uхол. хода-Uпод нагр./Uпод нагр.=Rвых/Rнагрузки.

Если Вы предпочитаете теоретический расчёт, можно упрощённо рассчитать выходное сопротивление следующим образом (расчёт не учитывает активное сопротивление обмоток выходного трансформатора).

Выходной трансформатор имеет Ra=2400 Ом, сопротивление нагрузки Rн=8 Ом. Таким образом, имеем некий коэффициент, определяемый отношением Ra/Rн=2400/8=300.

Если теперь разделить сопротивление лампы в рабочей точке (443 Ом) на этот коэффициент, получим выходное сопротивление.

Rвых.=443/300=1,48 Ом. Для лампового усилителя, в отличие от транзисторного, имеющего очень малое значение выходного сопротивления, такая величина считается вполне нормальной. Обычно её значение составляет от 1 до 3 Ом.

Если Вы располагаете значением коэффициента трансформации, можно получить искомое значение выходного сопротивления делением сопротивления в рабочей точке на квадрат этого коэффициента. Это ещё один упрощённый способ.

Разделив значение сопротивления нагрузки (8 Ом) на выходное сопротивление (1,48 Ом), получим коэффициент демпфирования, о котором я говорил выше.

Кд=Rн/Rвых=8/1,48=5,41

Много это, или мало? Позволю себе привести цитату из старой (50-х годов прошлого века) статьи «Преувеличения и усилители» Уильямсона и Волкера: «Независимо от схемотехники выходного каскада, используя положительную обратную связь по току, можно получить любое значение выходного сопротивления, как равное нулю, так и отрицательное. Однако необходимо заметить, что оптимальное значение выходного сопротивления зависит от используемого громкоговорителя и, особенно, от его акустического оформления. Из этого следует что доктрина «чем больше коэффициент демпфирования, тем лучше» отнюдь не всегда обеспечивает лучшее качество звука».

Можно сказать иначе. Из-за разного во времени торможения диффузора динамика, в зависимости от выходного сопротивления усилителя, мы получаем разное звучание.

Катодный резистор для лампы 6С19П рассчитываем по формуле Rкат=Uo/Io=56/0,065=861,5 Ом (на схеме 860 Ом)

Вот, пожалуй, и весь расчёт оконечного каскада. Если Вы внимательно всё прочитали, то расчёт каскада на любой другой лампе не покажется сложным, важно только иметь хорошие графики АСХ и немного терпения.

Теперь приступим к рассмотрению особенностей схемы.

В первую очередь необходимо отметить очень большую суммарную ёмкость конденсаторов фильтра анодного источника (19100 мкф). Дело в том, что «энергетическая вооружённость» такого источника позволяет без всяких проблем воспроизводить очень громкие импульсные сигналы без просадки анодного напряжения.

Кроме этого, резонансная частота источника питания (F=1/2П, где L – индуктивность дросселя блока питания в Генри, С – ёмкость фильтра в Фарадах) при таких ёмкостях, оказывается достаточно низкой. Есть мнение, что для правильного тонального баланса в басу, она должна быть минимум раз в 5, а лучше в 10, ниже самой нижней рабочей частоты выходного трансформатора. В моём случае частота резонанса блока питания около 0,5 Гц, а нижняя частота выходного трансформатора 5 Гц. Т. е. условие выполняется. И, что тоже важно, при таких ёмкостях уровень фона минимален (практически трудно определяем).

Известный конструктор ламповых устройств – (автор усилителей «Маэстро Гроссо», «Триумвират» и многих других) предложил простую формулу для расчёта ёмкостей анодного источника.

Для каждого каскада минимальная ёмкость фильтров анодного источника вычисляется следующим образом.

Если величину тока брать в миллиамперах, а напряжение в вольтах, то величина ёмкости будет определяться в тысячах микрофарад. В моей схеме ток I – сумма токов оконечного и драйверного каскадов (поскольку нет резистора анодной развязки по питанию).

С треб = 50*Io/Eпит. Io - ток покоя каскада, Епит - напряжение питания каскада.

Физический смысл этого - обеспечение спада полки прямоугольного импульса длительностью в одну (1) секунду не более 2%.

Хочу сказать, что в различных источниках указан разный коэффициент (от 1 до 50), поэтому, какой применить – дело вкуса. Увеличивая ёмкость анодного источника, мы уменьшаем фазовые искажения на низких частотах, но до какого предела, вот в чём вопрос. Поэтому реальная ёмкость анодного источника в данной схеме может варьироваться в широких пределах (от 200,0 мкф до 20 000,0 мкф). Естественно, при её изменении, будет изменяться характер звучания усилителя, низ будет более глубоким и весомым при увеличении ёмкости. Но, если Ваши акустические системы не в состоянии воспроизводить достаточно низкие (ниже 40 Гц) частоты, имеет смысл не увлекаться чрезмерным увеличением ёмкостей анодного источника, соблюдая принцип разумной достаточности. В общем, слушайте и анализируйте.

Кстати сказать, отсутствие резистора анодной развязки по питанию, позволило избавиться от «лишней» фазосдвигающей цепочки, которая была бы образована этим резистором и анодной ёмкостью драйверного каскада.

Это ещё одна из особенностей данной конструкции.

Следующей особенностью можно назвать плавное (минимум в два раза) понижение частот срезов каскадов от выхода к входу, причём, для уменьшения фазовых искажений на низких частотах, частота среза самого низкочастотного (драйверного) каскада выбрана в районе 0,04 Гц (для триода 6С4П).

Абсурд, подумают многие. Ведь на реальных записях практически нет сигналов с частотами ниже 20 Гц. Да, этот так. Но, как показали практические эксперименты (мои и моих друзей), наши уши прекрасно слышат разницу в звучании, и чем ниже частота среза, тем звучание лучше.

В моём случае частоты среза каскадов выбраны следующим образам.

1) Выходной трансформатор – 5 Гц.

2) Выходной каскад на лампе 6С19П – 1 Гц.

3) Разделительная цепочка – 0,4 Гц.

4) Предварительный каскад на лампе 6С4П – 0,04 Гц.

На какую же примерную величину частоты среза самого низкочастотного (драйверного каскада) следует ориентироваться?

Самое лучшее звучание получается при равенстве постоянных времени анодной и катодной цепей (Тау), которые определяются как произведение соответствующих ёмкостей на сопротивление. Иными словами, должно выполняться условие

Ca*(Ra+Ri)=Cк*Rк, где Ca – ёмкость анодного источника каскада, Ra – величина резистора анодной нагрузки, Ri – внутреннее сопротивление лампы в рабочей точке, Ск – ёмкость в катоде лампы, Rк – величина резистора автоматического смещения.

В моём случае, величина сопротивления, определяющего постоянную времени анодной цепи, рассчитывается несколько сложнее. Дело в том, что из-за отсутствия резистора анодной развязки, постоянная времени анодной цепи - общая и для драйверного и для оконечного каскадов. Поэтому величина этого сопротивления определяется как суммарное сопротивление двух параллельных цепей, одной из которых является последовательная цепочка Ri лампы 6С4П (3,2 кОм) и резистора анодной нагрузки (8,1 кОм), а другой последовательная цепочка Ri лампы 6С19П (443 Ом) и сопротивление первичной обмотки выходного трансформатора (2400 Ом).

Иными словами 1/Rобщ.=1/11300 Ом+1/2843 Ом. Отсюда Rобщ.=2273 Ом.

Умножив величину этого сопротивления на ёмкость анодной батареи, получим постоянную времени анодной цепи. По расчёту получаем 43 секунды.

Теперь, зная эту величину, вычисляем необходимую ёмкость в катоде лампы драйвера. Для этого 43сек/192 Ом=0,223958 Ф=223958 мкф. На схеме указана ёмкость 180000 мкф. Дело в том, что эта ёмкость ориентировочная, и зависит, как Вы понимаете, от величины катодного резистора, подбираемого при настройке, в зависимости от конкретных экземпляров ламп. Величина этого резистора, для смещения равного 2,1 вольта, может быть в пределах от 180 Ом до 250 Ом. Иными словами, если у Вас окажется необходимым применить резистор с сопротивлением 250 Ом, то необходимая ёмкость будет уже 43/250=0,172Ф=172000 мкф.

Следующей особенностью является применение достаточно «низкоомного» регулятора громкости. Если Вы посмотрите на различные ламповые схемы, особенно прошлого века, то увидите, что величина этого резистора обычно несколько выше (22 кОм – 1 мОм).

Всё дело в том, что современные источники сигнала имеют, как правило, очень низкое выходное сопротивление (к примеру, мой CD проигрыватель Rotel RCD 02S имеет выходное сопротивление 100 Ом). Входное сопротивление следующего за ним каскада должно быть раз в 10 больше (чтобы не было просадки входного напряжения сигнала). Таким образом, в моём случае, можно было бы воспользоваться переменным резистором величиной 1 кОм. Если Вы посмотрите на величину тока входной цепи, то легко заметите, что при переменном резисторе, например, в 47 кОм, ток во входной цепи составит 2,1/47000=0,000044 А (2,1 вольта – смещение каскада), а при переменном резисторе 2,2 кОм, это же ток составит уже 2,1/2200=0,00095А, т. е. в 21,5 раза больше. Зачем же нам сознательно в 21,5 раза ослаблять удельную мощность сигнала? Очевидно, что с более «крупным» сигналом лампе предварительного каскада работать легче, поэтому и все тихие нюансы записи музыкальных фрагментов будут более различимыми. Если Ваш источник сигнала имеет достаточно низкое выходное сопротивление, то заменой всего лишь одного регулятора громкости можно добиться впечатляющего улучшения качества воспроизведения. Проверьте, и убедитесь в этом сами.

Несмотря на этот факт, хочу Вас предостеречь. Не стоит увлекаться чрезмерным уменьшением номинала этого резистора. Улучшение звучания будет происходить до какого-то предела, а затем оно снова станет ухудшаться. Для разных ламп его (резистора) значение будет разным, поэтому лучше начать с большего номинала, постепенно уменьшая его значение до оптимального. Кроме собственного слуха, в этом вопросе Вам мало кто поможет.

Ещё одной особенностью предварительного каскада является отсутствие резистора утечки в сетке входной лампы. Я сознательно отказался от этого дополнительного элемента в силу нескольких причин.

Во-первых, у проволочного переменного резистора типа ППБ, который я применил, открытая конструкция, и скользящий движок очень плотно скользит по сектору. Более того, пятно контакта у него достаточно широкое, т. е. опирание всегда происходит на несколько витков (3 или 4), поэтому контакт никогда не прерывается.

Во-вторых, ручку громкости почти не кручу (очень редко). Поставил один раз и всё. Это, если возникнет вопрос об износе сектора.

В-третьих, убирается ещё один элемент на пути звука.

Но, хочу Вас предупредить. Если будете повторять конструкцию, используя на входе другой переменный резистор (например, типа СП-1), то поставьте с управляющей сетки на землю резистор номиналом 200-300 кОм, защитив таким образом лампу. Дело в том, что у этих типов переменных резисторов контакт движка с неподвижной пластиной не очень хороший.

На Рис. 2 приведена схема усилителя, где в качестве драйвера вместо триода 6С4П применён пентод 6Ж8.

Каскад имеет ряд особенностей, о которых стоит поговорить отдельно.

Первая из них, как я уже говорил, отсутствие конденсатора, шунтирующего катодный резистор, пагубно влияющего на звучание. Понятно, что в этом случае возникает обратная связь, уменьшается усиление, растёт выходное сопротивление каскада и т. д. и т. п. Всё так, но, с моей точки зрения, практическое влияние этих факторов на звучание оказывается значительно меньшим, чем влияние конденсатора, даже если он приличного качества. Для любителей что-либо переключать могу порекомендовать тумблер, с помощью которого конденсатор можно быстро подключить или отключить.

Вторая особенность, не совсем традиционное включение конденсатора экранной сетки. Кроме некоторого увеличения усиления, такое включение, с моей точки зрения, улучшает звучание. Проверить это очень легко. Достаточно подключить конденсатор к катоду лампы (как у меня на схеме) или на общий провод. Разницу Вы услышите непременно.

Пару слов о самом конденсаторе экранной сетки C1. Как вариант, можно применить электролит, ёмкостью 20-100 мкф. Не обращайте особого внимания на величину этой ёмкости, она, как правило, выбирается с большим запасом. К примеру, частота среза цепи (R4,C1) при применении конденсатора, ёмкостью 100,0 мкф, составит 0,02 Гц. Такой выбор целесообразен при экономии места внутри корпуса усилителя, так как электролитический конденсатор имеет малые размеры.

Если габариты усилителя позволяют, то вместо него желательно применить плёночный или бумажный конденсатор, ёмкостью от 10 мкф на напряжение от 100 В.

Дело в том, что конденсатор экранной сетки влияет на качество воспроизведения низкочастотного диапазона. Бас становится более «собранным», пропадает некоторая гулкость и размытость, присущая звучанию электролитов. Из-за этого, как Вы понимаете, и средне-высокочастотный диапазон становится более «читаемым», в общем, одни плюсы.

Как вариант, можно применить отечественные конденсаторы К73-11

или их импортные аналоги серии CL20, рассчитанные на соответствующее рабочее напряжение. Они имеют относительно небольшие размеры при значительной ёмкости. А лучше всего, если есть такая возможность, применить фольговые пропиленовые конденсаторы известных фирм, несмотря на их приличную стоимость.

Очень много споров у конструкторов ламповых усилителей возникает при обсуждении организации питания экранной сетки пентода. Некоторые применяют стабилизаторы питания этой сетки, некоторые используют светодиоды и т. д. и т. п.

Не претендуя на истину в последней инстанции, я изложу своё мнение на этот счёт. Тут нужно сказать, что экранная сетка может питаться от общего источника анодного питания или отдельного, специально для этого предназначенного.

Вначале скажу о стабилизации питания экранной сетки при одном анодном (общем) источнике.

Мои эксперименты показали, что стабилизация питания экранной сетки маломощного пентода не улучшает звучание. Вся чистота и мягкость середины и верха уходят, оставляя взамен жесткое и аналитичное звучание.

Наверное, всё же, мне нравится красивое звучание, а не точное.

Теперь о раздельном питании.

Есть мнение, что лучше всего питать экранную сетку от отдельного стабилизированного источника (отдельная обмотка на трансформаторе - далее стабилизатор).

Вывод неутешителен, звучание при этом опять же ухудшается. Так, как и в первом случае, оно становится жёстким и каким-то механистичным, хотя наверняка, найдутся любители такого звука.

Скорее всего, меры по стабилизации питания экранной сетки нужны для мощных выходных пентодов, так как в различных источниках (книги, журналы) разными авторами при этом отмечается улучшение звучания. С мощными пентодами я экспериментов не проводил, это отдельная тема.

Поэтому, при использовании маломощных пентодов:

1) Стабилизировать питание экранной сетки не нужно.

2) Анод и экранная сетка должны быть запитаны от одного (общего) источника.

Повторюсь, это только моё мнение, но, если Вы захотите попробовать вариант со стабилизатором экранной сетки, то необходимо произвести следующие манипуляции.

Вместо конденсатора С1 устанавливаем стабилитрон, с напряжением стабилизации 100 вольт (например, КС 600А), а номинал резистора R4 уменьшаем до 22-24 кОм. Шунтировать этот стабилитрон конденсатором или нет, решите сами, попробовав оба варианта. Суммарный ток (стабилитрона и экранной сетки), протекающий через резистор R4, должен быть около 6 ма.

Вот и все изменения.

Статья была бы неполной, если обойти вниманием тему быстродействия каскадов усилителя. Большую помощь в написании этой части оказал наш коллега, В. Большаков из Ярославля, за что ему отдельная благодарность. Этот параметр, как показала практика, тоже является достаточно важным для достижения высококачественного звучания.

Я позволю себе поговорить о быстродействии каскадов усилителя в свете новомодной теории ПСН (приведенной скорости нарастания) и классической, общепринятой (по Mh – ослаблению на верхней граничной частоте рабочего диапазона), так как этот вопрос представляет интерес для достаточно большого числа радиолюбителей. Думаю, что не нужно объяснять, что чем меньше ослабление Mh, тем быстродействие выше (это для тех, кто не видит связи между ПСН и Mh).

Термин скорость нарастания сигнала пришел к нам из цифровой техники и численно показывает, до какого напряжения может вырасти передний фронт импульса за 1 мксек. В звуковой технике он характеризует скоростные характеристики усилителя, его быстродействие, способность передавать музыкальные сигнала с крутыми фронтами, например, удар барабана бочки, щипок струны контрабаса, электронная музыка. В операционных усилителях она превысила несколько тысяч, для ламповой технике показатель 24, уже хороший результат. Высокой скорости нарастания мешают очень большие динамические емкости ламп, кабелей и выходных трансформаторов.

Скорость нарастания сигнала численно равна току, который заряжает емкость, деленному на эту емкость. Математически это выглядит так:

S. R. = [ А, Ф ]

Из этой формулы легко вычислить каждый член, например амплитуда тока равна:

Im = S. R. * Cдин

В 1997 г. в своих трудах Вальтер Юнг (Walter Jung) предложил скорость нарастания сигнала считать так:

6,28 * fв * Eам

S. R. = [ в/мксек ]

Например, для верхней частоты 87000 Гц при амплитуде напряжения 124,2 В S. R. равна 67,858 в/мксек. И он же предложил иметь пятикратный запас, при котором не будет проблем с передачей сигнала, т. е. нарастание скорости должно идти от выхода к входу. Это значит, что у драйвера она должна быть в 5 раз выше.

Однако расчет по скорости нарастания для сравнения каскадов между собой не совсем удобен, поэтому предложил привести скорость нарастания к 1 вольту, т. е. S. R./Um, которую и назвал приведенной скоростью нарастания (ПСН). При приведении вольты уничтожаются, и размерность выглядит, как 1/мксек. К какой же приведенной скорости нарастания сигнала нужно стремиться, конструируя усилитель? Практические измерения скорости нарастания сигнала показали, что у самого быстрого музыкального инструмента, клавесина, она оказалась равна 0,11 1/мксек.

Очевидно, что скоростные характеристики усилителя не могут быть хуже этой величины.

По мнению Ю. Макарова, максимальная ПСН должна быть на входе усилителя, и, далее, она должна уменьшаться (предлагается ступенчатое, минимум в два раза, покаскадное уменьшение) до минимальной (но достаточной) на выходе.

В принципе, метод расчёта по ПСН, позволяет быстро «прикинуть» параметры каскада на предмет быстродействия. Поделил амплитуду тока на ёмкость, затем на амплитуду напряжения - получил некую цифру. Разделил на 2Пи - получил частоту.

Однако само по себе это быстродействие не является единственным критерием для оценки качества звучания усилителя.

Тут каждому своё. Одному нравится тёплое и окрашенное звучание (очень комфортное на слух), другому аналитичное и неокрашенное (как у Макарова) и т. д. и т. п.

Само по себе понятие "качества звучания" очень относительно, так как уши у всех разные.

Ответ на вопрос, удачна она (попытка) или нет - у каждого свой.

Для тех, кто заинтересуется расчётом каскадов при помощи ПСН, я покажу, как это делается.

Итак, в качестве примера, рассчитаем ПСН на выходе драйверного каскада, выполненного на лампе 6Ж8.

4,32/0,04/56=1,93 1/мксек, что в пересчёте на частоту составит 383871 Гц (по уровню -0,17дБ).

Поясню размерность величин:

4,32 ма – амплитуда тока на выходе драйвера (6Ж8)

Приблизительно, её величина составляет 0,8 от анодного тока лампы (5,4 ма)

0,04 – так выглядит в расчёте 40 пФ - суммарная входная ёмкость лампы 6С19П, которую мы рассчитали вначале статьи.

56 В – амплитуда напряжения на выходе каскада драйвера.

307324 Гц – граничная частота, получаемая делением ПСН на 2Пи.

Теперь представьте, что мы применили другую выходную лампу с суммарной входной ёмкостью, например, 200 пФ.

Смотрите, что у нас получится.

4,32/0,2/56=0,386 1/мксек, что в пересчёте на частоту составит 61419 Гц, т. е. в 5 раз меньше.

Помните, вначале статьи я сказал, что суммарная входная ёмкость лампы 6С19П мала, и это облегчает выбор лампы драйвера? Так вот, посмотрев расчёт, теперь можно легко понять, что ПСН растёт с увеличением амплитуды тока и (или) с уменьшением суммарной входной ёмкости (которая зависит от типа применённой лампы). Хорошо, если эта ёмкость невелика (как у лампы 6С19П). Небольшая суммарная входная ёмкость такой лампы позволяет при сохранении приемлемой ПСН, применять лампы драйвера с небольшим током покоя.

Для сравнения, ПСН=3,96 1/мксек для каскада на 6С4П (на выходе каскада), и, кажется, что это очень хорошо. Однако при расчёте оказывается, что из-за гораздо меньшей суммарной входной ёмкости пентода, по сравнению с триодом, у лампы 6Ж8 почти в 2 раза выше ПСН на входе, по расчёту 3,47 1/мксек против 1,8 1/мксек у 6С4П.

Усилитель в целом по ПСН:

3,47 на входе; 1,93 на выходе драйвера; 0,9 на выходе оконечного каскада. Это для лампы 6Ж8 в драйвере.

1,8-3,96-0,9 для 6С4П в драйвере.

Вот и получается, что вариант с лампой 6Ж8 согласуется лучше со всеми постулатами этой теории: максимальная ПСН (3,47) на входе, затем она уменьшается (до 1,93) на выходе драйвера, минимальная (0,9), но, достаточная (вспомните про клавесин), на выходе оконечного каскада.

Теперь несколько слов о другом способе расчёта по Mh (ослаблению на верхней граничной частоте). Так вот, этот расчёт учитывает и внутреннее сопротивление лампы, и величину анодной нагрузки, и входную динамическую ёмкость Миллера, и, наконец, частоту, на которой Вы хотите посмотреть ослабление. С моей точки зрения, он, более адекватен.

Математически, формула расчёта выглядит так:

Mh дБ=20*LOG(((Rout/Rc)+1);10) где

Rout – выходное сопротивление драйвера кОм=Ri*Ra/Ri+Ra

Rc – реактивное сопротивление кОм=1000000/(2Пи()*Fверх. кГц*Смил. пф)

Ri – внутреннее сопротивление лампы

Ra – величина анодной нагрузки

Более того, на специализированных сайтах в Интернете, есть бесплатная программа (таблица в Excel) для расчёта по Mh (автор Юхневич и Манаков), которая практически очень быстро позволяет определить затухание на верхней частоте рабочего диапазона, исходя из типов применённых ламп, конкретных режимов их работы и выбранной верхней частоты.

Какой способ расчёта применить, классический или по ПСН, решайте сами. Как Вы понимаете, классический расчёт намного увеличивает шансы применения так называемых «малотоковых» ламп (например, 6Г7, 6Н9С, 6Н2П и т. д. и т. п.) в драйвере. И, напротив, расчёт по ПСН резко сужает круг ламп, предназначенных для работы в драйвере. На передний план выходят лампы, обеспечивающие большую амплитуду тока (например, 6С45П, 6С15П, 6П9 и т. д.).

1) Отдельного внимания заслуживает вопрос о включении разделительного конденсатора, согласно направлению. В прошлых статьях я не сказал об этом. Понятное дело, что в качестве разделительного мы применяем не «электролит» и он всё равно будет работать, как его не поставь, но как показала практика, на звучание это оказывает большое влияние. Конденсатор, включённый в «правильном» направлении, обеспечивает лучшую детальность и ясность, что, в свою очередь, является важным положительным моментом.

Физический смысл этого заключается в следующем. Конденсатор, как известно, мотается в рулон из двух полосок фольги. Как Вы понимаете, одна из обкладок всегда оказывается внешней, а вторая внутренней, спрятанной внутри неё. Внешняя обкладка одновременно является экраном для внутренней. Так вот, эту внешнюю обкладку будет правильно и логично подключить к точке схемы с меньшим импедансом (аноду драйвера), а внутреннюю обкладку, к точке с бОльшим импедансом (сетке выходной лампы).

На конденсаторах типа Дженсен, с одной стороны нанесена черта, на других, типа Мультикап, черты нет, только надпись.

Если Вы применяете Дженсен, то черта (это и есть метка внешней обкладки) должна находиться со стороны драйвера, тут всё просто и понятно, а если другой конденсатор, то придётся повозиться.

О том, как определить вывод конденсатора, подключённый к внешней обкладке, очень хорошо написал наш коллега, конструктор Олег Чернышёв из Ярославля.

Цитирую Олега:

Вот передо мной лежит конденсатор К40У-9 0.1мкФх400В. У него внешняя металлическая оболочка, и это сильно упрощает дело. Условно обозначим левый вывод "А", правый - "В". Подключаю к выводам генератор и подаю сигнал 500Гц 10В RMS. Подключаю осциллограф землёй к выводу "А". Щуп без делителя, входное сопротивление - 1МОм. Касаюсь щупом оболочки конденсатора. Вижу смесь из сигнала 500Гц и фона 50Гц. Чтобы убрать фон, касаюсь пальцем земли осциллографа, измеряю уровень сигнала 500Гц. Амплитуда - примерно 1.2В. Перекидываю землю осциллографа на вывод "В" и делаю там всё то же самое. Там амплитуда сигнала 0.45В. Теоретически, должно быть гораздо меньше, но не будем мелочиться. Делаем вывод, что вывод "В" подключен к внешней обкладке. Водостойким маркером помечаем его знаком "+". В будущем он будет подключен к аноду драйвера.

С этим конденсатором разобрались, но в мой усилитель пойдут другие, а у них нет металлической оболочки. Надо сделать из кусочка фольги, да вот незадача - перерыл весь дом, не могу найти таковой. Обычно под диваном обёртки от конфет бывают, а сейчас нет. Побегу в магазин...-

Как видите, способ достаточно простой и эффективный, и каждый из нас может им воспользоваться.

Позволю себе немного поговорить и о типах конденсаторов, применяемых в качестве разделительных. На моих схемах Вы видите два типа, это Мультикап и Дженсен. Дело в том, что данные типы конденсаторов давно и с успехом применяются в ламповых усилителях, обеспечивая (в любом случае) высококачественное звучание. Но, я совершенно не настаиваю на их применении. Более того, для некоторых из нас (я в их числе), звучание Multicap RTX, PPFX-S и т. д. покажется излишне ярким и излишне детальным. Очень хорошо высказался по поводу применения таких конденсаторов, в качестве разделительных, наш коллега, конструктор Михаил Андронов из Риги.

По поводу RTX могу сказать, что это действительно высококлассные конденсаторы. Поначалу я тоже ими сильно увлекался, но постепенно понял, что они больше подходят для пристального разглядывания музыки, а для наслаждения ею лучше другие.-

Поэтому, не бойтесь экспериментировать с типами конденсаторов и их сочетаниями, соединяя параллельно несколько типов. Недостатки одного типа могут быть компенсированы достоинствами другого. Нужно лишь подобрать тип и величину ёмкости. Мне, например, очень нравится звучание «бутерброда», состоящего из основного конденсатора Jantzen Superior Z-cap, ёмкостью 1,0 мкф*800В и шунтирующего его алюминиевого Дженсена, ёмкостью 0,22 мкф*630В. Я знаю конструкторов усилителей, которые с успехом применяют отечественные конденсаторы серии МКВ, "разутые" К75-10, К40У-9, импортные Мундорфы и т. д. и т. п., всех не перечислить. Конечно, некоторое количество времени придётся потратить на эти эксперименты, но результатом будет звучание, к которому Вы стремились.

По этому вопросу мнения разделены на диаметрально противоположные. Некоторые уважаемые конструкторы, например, считают, что каждый проводник имеет направленность. На его сайте описан метод определения этой направленности и указано, как включать провода в конкретной схеме.

Другие, не менее уважаемые, конструкторы отвергают это утверждение, считая его своего рода шаманством.

Чтобы не вступать в полемику, я изложу своё мнение на этот счёт.

Известно, что некоторые фирмы (например, Ecosse) указывают направление сигнала для своих проводников, а некоторые (например, Kimber) считают, что их провода не имеют направленности. Известно также, что в процессе работы, провода прирабатываются, приобретая эту самую направленность. Поэтому монтаж выполняем проводами, которые по заявлению производителя, не имеют направления. Пусть они сами со временем приобретут его.

Теперь о типах проводов. В моих конструкциях применяется два вида. Для входных цепей (от входного разъёма до первой лампы) применена перевитая моножила Nordost Wyrewizard Dreamcaster, диаметром 1 мм. Для всех остальных цепей применяется многожильный Kimber серии TC. Оба этих вида проводов, по заявлению производителей, не имеют направленности.

К слову, большое влияние на звучание оказывают провода, идущие от силового трансформатора на накальную обмотку кенотрона и провода входной цепи. Все остальные, включая накальные других ламп, тоже оказывают влияние, но в меньшей степени.

Не подумайте, что я настаиваю на применении именно таких проводов. У всех из нас разные возможности. Поэтому поэкспериментируйте с ними, возможно, в Вашем варианте усилителя будут применяться другие типы.

Например, во входных цепях прекрасно работают медные обмоточные провода, диаметром 0,6-1,0 мм, нужно только изолировать их друг от друга, к примеру, шнурком от обуви.

3) Резисторы анодных и катодных цепей.

Хочу сказать, что я много экспериментировал с типами резисторов в аноде и в катоде. Критерий - звучание. Смотрите, что получилось.

В аноде наилучшие результаты у проволочных типа С5-5 или ПТМН. Заявления некоторых конструкторов о том, что данные типы резисторов имеют большую индуктивность и, соответственно, негативно влияют на звучание, с моей точки зрения, не состоятельны.

Автор очень многих ламповых конструкций - , имея удостоверение метролога , в своё время измерял и сравнивал индуктивности резисторов разных типов. Вы удивитесь, но наибольшей индуктивностью обладают 2х ваттные резисторы типа ВС. Как говорится, комментарии излишни.

В катодах лучше всего себя показали углеродистые или боруглеродистые резисторы типа ВС, Р1-71, БЛП.

4) Плавное включение.

Вы видите, что на схеме указаны очень большие ёмкости анодного источника питания. Для того чтобы исключить бросок тока во время включения и поберечь кенотрон (ведь многие используют раритетные и дорогие приборы), необходимо обеспечить плавный заряд этих ёмкостей. Решить этот вопрос можно достаточно просто.

Параллельно контактам тумблера "анод" устанавливаем мощный, 10-15 Вт, резистор 1,0-5,0 кОм (на схемах не показан). Включаем сеть, тумблер «анод» пока разомкнут, но, в схемах с автоматическим смещением (варианты с лампой 6С19П), средняя точка анодной обмотки соединена с корпусом через этот резистор. По мере накала кенотрона, зарядка ёмкостей до какого-то значения (например, до 50-100 вольт), происходит маленьким током, так как бросок тока резистор ограничивает. Для кенотрона такой ток безопасен.

В усилителе (третий вариант), где в качестве выходной лампы, применяется пентод 6П31С с фиксированным смещением, этот тумблер стоит в разрыве «плюсового» провода источника питания, так как фиксированное смещение должно подаваться на сетку лампы сразу после включения в сеть, т. е. до подачи полного анодного напряжения.

Через некоторое время, достаточное для прогрева нитей накала ламп (1-3 минуты) включаем тумблер "анод", тем самым «закорачивая» резистор. Напряжение плавно поднимается дальше до своего значения (230 вольт).

Ну вот, теперь настал черёд привести третий вариант усилителя, выполненный на лампе 6П31С. ВАХ лампы приведены на рисунке.

Как Вы видите, лампа очень линейна, что не удивительно. Лампы, специально разработанные для схем строчной развёртки телевизоров, а 6П31С именно такая лампа, в большинстве своём просто обязаны быть линейными. Дефекты изображения заметны очень сильно, поэтому высокий вакуум, хорошо продуманная конструкция, высокая рассеиваемая мощность, очень большая электрическая прочность, надёжность и долговечность, а также высокое качество изготовления этих приборов гарантированы. Всё это благотворно сказывается и при использовании этих ламп в звуковом тракте. Поэтому не бойтесь применять телевизионные лампы в своих конструкциях, многие из Вас при этом будут приятно удивлены результатом.

Схему усилителя Вы видите на рисунке.

Естественно, она имеет ряд особенностей, о которых нужно сказать отдельно.

Как Вы видите, смещение выходного каскада фиксированное. Применение фиксированного смещения, в данном случае, улучшает артикуляцию , особенно в низкочастотном диапазоне. Как сказал один из наших коллег, мой друг – Михаил Дмитриенко г. Москва, фиксированное смещение «даёт более разнообразное чтение ритмов».

Но, часто у конструктора усилителя не оказывается дополнительной обмотки силового трансформатора для реализации такого вида смещения. Не беда. Посмотрите на схему и обратите внимание на один из вариантов реализации фиксированного смещения от анодной обмотки.

Теперь о режимах.

На аноде лампы напряжение 225В, смещение 37В, ток 0,07А.

В этом режиме Ri в раб. точке, порядка 690-700 Ом.

Выходное сопротивление усилителя примерно 2,3 Ом.

К демпфирования 3,5.

Ещё одна особенность. По справочнику максимальная рассеиваемая мощность лампы 6П31С составляет 14 Вт, а в моём случае эта мощность около 16 Вт. Ничего страшного. Дело в том, что оригиналы 6DQ6-B (GE), с которых копировались наши 6П31С, имеют Pa=18 Вт. Некоторые наши коллеги, проводили эксперименты с лампами 6П31С, рассеивая на аноде до 20 Вт. Никаких нареканий.

Резистор R доп. в катоде лампы 6П31С вспомогательный. Удобно контролировать ток через лампу во время настройки по падению напряжения на этом резисторе. Падению напряжения 0,7 В на резисторе 10 Ом будет соответствовать ток 0,7/10=0,07А=70ма. После настройки резистор можно убрать или «закоротить».

Драйвер я оставил прежний, 6Ж8 в пентоде, катодный резистор не шунтирован конденсатором. Усиление драйвера около 42. Чувствительность всего усилителя получилась около 0,85В.

Ну что сказать. При сохранении фундаментальности баса, несмотря на Альфа=3,5, удивительная прозрачность и воздушность на СЧ и ВЧ, по сравнению с 6С19П. Ну, так и хочется сравнить средне-высокочастотный диапазон с прямонакалами 6С4С и т. д. Низкочастотный диапазон при этом ничуть не страдает, он более весом и глубок, по сравнению с 6С4С.

Вот и получается, что не Альфой единой..., тем более что её можно легко увеличить в два раза, используя 4х-омный вывод выходного трансформатора, о чём мы говорили несколько ранее.

В общем, звучание 6П31С мне очень понравилось. Оно, как бы сказать, душевнее, что ли, по сравнению с 6С19П. Попробуйте и сравните. Выбор за Вами.

В заключение, необходимо сказать, что все схемы являются тщательно отработанными конструкциями. Несмотря на отсутствие стабилизаторов анодного и иных источников, усилители работают очень устойчиво и практически не изменяют звучания при колебаниях сетевого напряжения в пределах 10%. Поэтому, если Вы захотите их повторить, будет достаточно придерживаться указанных на схеме напряжений в контрольных точках.

Если Вы обладаете лампами 6SJ7 (это зарубежный аналог 6Ж8), смело применяйте их. Звучание от этого только улучшится. Ничего переделывать при этом не нужно.

Как всегда, отдельная благодарность моим друзьям – (gegen48(dog)*****), за консультации при подготовке статьи, и

Д. Андрееву (ada_optika(dog)*****) за изготовление высококачественных моточных изделий (трансформаторов, дросселей) по моему заказу.

Вот и всё. Выбирайте вариант, соответствующий Вашим музыкальным предпочтениям, и слушайте музыку на здоровье. Уверен, что Вы не пожалеете о затраченном на изготовление усилителя труде и времени.

С уважением, Вадим Пузанов, г. Брянск.

Просмотров