Варианты наддува двигателей внутреннего сгорания. Виды наддува двигателей. Что лучше выбрать механический нагнетатель воздуха или турбокомпрессор

Наддув - увеличение количества свежего заряда горючей смеси, подаваемой в двигатель внутреннего сгорания, за счёт повышения давления при впуске. Позволяет повысит мощность двигателя.

Виды наддува

В ДВС применяют три типа наддува:резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен).

механический – в этом варианте компрессор приводится во вращение ремнем от двигателя.

газотурбинный (или турбонаддув) – турбина приводится в движение потоком отработавших газов.

Механический наддув. (воздух закачивается компрессором) .

Механические нагнетатели позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора.

Существует два вида механических нагнетателей: объемные и центробежные.

Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами.

Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм .

Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении.

Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе.

Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта - весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается - избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Турбокомрессор.

Принцип действия турбокомпрессоров для наддува ДВС заключается в следующем - выхлопные газы ДВС, обладая большой скоростью и большой температурой попадают на сопловой аппарат турбины, где происходит их максимальный разгон и подача на рабочие лопатки турбины под правильным углом, при подаче на рабочие лопатки турбины происходит вращение турбины, которая в свою очередь вращает крыльчатку компрессора, насаженную на один вал с колесом турбины. Колесо компрессора представляет собой вращающий направляющий аппарат и крыльчатку, которые чаще всего соединены вместе в одну деталь.

Одним из наиболее эффективных способов повышения цилиндровой мощности ДВС является наддув. В судовых ДВС с наддувом воздух в цилиндры поступает под определенным давлением, создаваемым в специальных наддувочных агрегатах, установленных на двигателе. За счет увеличения массы заряда воздуха и цикловой подачи топлива достигается значительное повышение цилиндровой мощности и мощности всего ДВС.
Системы наддува состоят из наддувочных агрегатов (компрессоров), воздухоохладителей, распределительных органов и ресиверов. В зависимости от привода компрессоров наддув разделяют на механический, газотурбинный и комбинированный. В ДВС с механическим наддувом центробежный, роторный или поршневой нагнетатель воздуха приводится в действие от коленчатого вала двигателя, на что затрачивается 10 % и более эффективной мощности и снижается экономичность двигателя. Механический наддув применяется в судовых ДВС небольшой мощности.
Схема газотурбинного наддува:


Использование газотурбинного наддува дает возможность повысить мощность двигателя в более широких пределах, чем при механическом наддуве. В этом случае подача воздуха во всасывающий ресивер двигателя осуществляется через воздухоохладитель ВО компрессором К , приводимым во вращение газовой турбиной Т , использующей энергию выхлопных газов. Компрессор и газовая турбина компонуются в один агрегат, который называется газотурбокомпрессором (ГТК). В зависимости от назначения ДВС турбина работает при постоянном или переменном давлении выхлопных газов, средняя температура которых перед турбиной составляет 400 — 450 С. Газотурбинный наддув широко применяется в четырехтактных ДВС, а также в малооборотных двухтактных ДВС с прямоточной клапанной продувкой.
Комбинированный наддув применяется в основном в мощных малооборотных двухтактных ДВС с контурной продувкой, когда мощность газовых турбин недостаточна для привода воздухонагнетателя. При этом одновременно используется газотурбинный и механический наддув. Недостаточная мощность газотурбонагпетателя (ГТН) компенсируется мощностью воздухонагнетателя, приводимого в действие от коленчатого вала ДВС или от электродвигателя. В крейцкопфных ДВС в качестве воздухонагнетателя широко используются подпоршневые полости рабочих цилиндров. Это улучшает маневренность двигателя, так как при малых нагрузках и низкой частоте вращения мощность газовых турбин резко снижается. Подпоршневые воздухонагнетатели при отключенных ГТН обеспечивают работу ДВС и скорость хода судна до 75 % от номинальной. При умеренном наддуве давление воздуха, создаваемого нагнетателем, составляет 0,13—0,15 Ml 1а, при высоком наддуве — 0,17—0,25 МПа и выше.
Для увеличения массы заряда воздуха, поступающего в цилиндр, и снижения тепловой напряженности деталей цилиндро-поршневой группы применяются воздухоохладители, позволяющие повысить мощность двигателя и его экономичность. В судовых ДВС используется несколько типов воздухоохладителей: с круглыми трубками без оребрения; с плоскими оребренными трубками и др.

Для того чтобы в объеме цилиндра сжечь больше топлива и получить в результате большую полезную мощность, необходимо пропорционально увеличить количество воздуха из условия α ≈ const. Эта задача нашла свое решение в наддуве. Наддувом называется увеличение заряда воздуха, подаваемого в цилиндр, за счет повышения его плотности в результате предварительного сжатия до давления P k >P o , и соответственно увеличение количества сжигаемого топлива. Степень форсировки дизелей наддувом оценивается “степенью наддува” λ н:

λ н = Р ен / Р е, (№1)

где Р е и Р ен — среднее эффективное давление двигателя без наддува и с наддувом.

Принципиально количество воздуха в цилиндре можно увеличить не только за счет его предварительного сжатия, но и за счет понижения температуры (удельный вес воздуха пропорционален Рк и обратно пропорцилнален Тк: γк / γо = Рк То / Ро Тк), а также повышением коэффициента наполнения цилиндра η н путем лучшей очистки цилиндра. Эти факторы используются при наддуве в комплексе. Так, после предварительного сжатия воздух охлаждается до температуры 30÷45 о С, после чего подается в цилиндр. Лучшая очистка цилиндра обеспечивается тщательной отработкой системы газообмена, использованием продувки камеры сгорания в 4-тактных ДВС.

Газотурбонагнетатель судового дизельного двигателя

Применение наддува позволило увеличить цилиндровую мощность дизелей в 4÷5 раз по сравнению с двигателями без наддува, однако потребовало решения ряда серьезных технических проблем, связанных с повышением механической и , ухудшением условий смазки, повышенными износами цилиндро-поршневой группы, согласованием характеристик агрегатов наддува и дизеля и т.д. Эти проблемы постоянно встают перед дизелестроителями при дальнейшей форсировке двигателей.

Различают следующие способы наддува:

  • Инерционный;
  • Механический;
  • Газотурбинный и комбинированный.

Попытки использования инерционного наддува имели место в начальный период форсировки 4-тактных ДВС. При этом каждый цилиндр снабжался специально подобранной длинной впускной трубой. Повышение давления воздуха в конце впуска достигалось благодаря кинетической энергии столба воздуха во впускной трубе и соответствующей организации в ней резонансных колебаний. Инерционный наддув позволял повысить мощность на 15÷25%.


Инерционный наддув судового двигателя

При механическом наддуве нагнетатель воздуха приводится в движение от коленчатого вала двигателя. В качестве нагнетателей применяются поршневые, ротационные или центробежные компрессоры, приводимые от коленчатого вала непосредственно или через передачу (зубчатую, цепную, электрическую ).

Наиболее широкое распространение в ДВС получили газотурбинный и комбинированный способы наддува. При газотурбинном наддуве для привода нагнетателя используется энергия выпускных газов. Газовая турбина и сидящий с ней на одном валу центробежный компрессор представляют собой единый агрегат — газотурбонагнетатель (ГТН). Газы из рабочих цилиндров, отдавая часть энергии газовой турбине, направляются далее в утилизационный котел и в атмосферу. Воздух, засасываемый из атмосферы, сжимается в компрессоре до давления Рк, подается в холодильник воздуха и затем — в продувочный ресивер и в рабочие цилиндры. При незначительном сжатии в компрессоре, когда температура не поднимается выше 45÷50 о С, холодильник может отсутствовать.

Под комбинированным наддувом подразумевается система, использующая одновоременно газотурбинный и механический наддув. К ней прибегают в случаях, когда мощность газовых турбин недостаточна для привода нагнетателя. Частным случаем механического нагнетателя является использование рабочих цилиндров крейц-копфных двигателей совместно с газотурбонагнетателем.


Механический наддув судового дизельного двигателя

Оценка степени совершенства той или иной системы наддува может быть дана на основе качественного анализа механического КПД двигателя. Для двигателя без наддува можно написать зависимость;

ηмех = Ne/ Ni = (Ni — Nмex) / Ni = 1 — Nмex / Ni:

η мех = 1 — N мех / Ni

При инерционном наддуве при прочих равных условиях мощность механических потерь двигателя N мех не изменится, а возрастет без каких- либо дополнительных энергетических затрат на привод нагнетателя воздуха. Следовательно, механический КПД двигателя увеличится. Тем не менее, инерционный наддув не нашел применения в судовых дизелях из-за грамоздкости впускной системы и сравнительно невысокого уровня форсировки.

В двигателе с механическим наддувом мощность механических потерь возрастает на величину NB затрат на привод нагнетателя воздуха; механический КПД равен:

η мн мех = 1 — ((N мех +Nв) / (Ni + ΔNi)), (№2)

где Ni + ΔNi = N iн — индикаторная мощность двигателя с наддувом.

Очевидно, что всякое увеличение мощности дизеля требует повышения давления наддува Рк. При этом возрастает и мощность Nв на привод воздушного нагнетателя. Если индикаторная мощность возрастает более интенсивно, чем мощность механических потерь, то механический КПД растет. В таком случае при возрастании Рк растет и среднее эффективное давление Ре н: Ре н = Pi н η мн мех .

При достижении определенного уровня форсировки затраты на привод механического воздушного нагнетателя начинают расти более интенсивно, чем приращение индикаторной мощности; механический КПД снижается. Несмотря на увеличение Рк, среднее эффективное давление при этом может даже уменьшится (если степень снижени η мех превосходит степень приращения Pi). В предельном случае механического наддува можно создать двигатель, у которого вся индикаторная работа будет поглощаться компрессором, механический и эффективный КПД будут равны нулю.

По опытным данным, граница обоснованного увеличения Ан при чисто механическом наддуве находится в пределах:

λн = 1,2÷1,3.

При этом Рк = 1,3÷1,5 или η мн мех = 0,70÷0,85.

При дальнейшей форсировке двигателей на привод нагнетателя требуется слишком большая мощность, что снижает η мех и η е. По этой причине в современных двигателях чисто механический наддув не применяется. Его можно встретить в двигателях старой конструкции (ЗД-100, 37Д, ДР 30/50, ДР 43/61 и др.).

Со времени, когда очевидной стала необходимость применения наддува двигателей, появилось множество вариантов наддува. Основными видами наддува являются следующие:

Рисунок 1- Виды наддува

Системы наддува можно квалифицировать по:

1) способу подачи воздуха без нагнетателя за счет инерции столба самого воздуха или газа;

2) конструкции нагнетателя;

3) виду привода нагнетателя;

4) типу связи между наддувочным агрегатом и двигателем.

Инерционный наддув (без нагнетателя, называемый еще «резонансным», «волновым», «акустическим») осуществляется за счет колебания давления во впускном трубопроводе поршневого двигателя. Волна понижения давления во впускном трубопроводе у входа в цилиндр во время такта впуска со скоростью звука перемещается до противоположного открытого конца трубопровода, отражается от него и в виде волны давления движется опять же со скоростью звука ко впускному клапану. Выбирая длину трубопровода таким образом, чтобы волна давления подходила к заключительному периоду впуска, можно обеспечить подачу заряда в цилиндр под избыточным давлением, осуществляя тем самым наддув двигателя (Рисунок 2).


Рисунок 2- Схема впускного тракта 1- корпус воздухоочистителя или специальный резонатор

Необходимую для этого длину трубопровода l можно рассчитать по времени ф прохождения волны от клапана к открытому концу трубопровода и обратно.

Энергия для «разгона» столба воздуха во впускном трубопроводе берется за счет дополнительной работы поршня, т.е. за счет повышения насосных и механических потерь двигателя.

Инерционный наддув как самостоятельная система наддува применяется в двигателях легковых автомобилей. Длина впускного трубопровода может изменяться в зависимости от скоростного режима двигателя, обеспечивая тем самым высокое наполнение цилиндров двигателя в широком диапазоне режимов.

В сочетании с газотурбинным наддувом инерционный наддув применялся в дизелях грузовых автомобилей -- система комбинированного наддува Шера (Рисунок 3).

Уровень повышения давления наддува при инерционном наддуве сравнительно невелик, поэтому такие системы обычно используются не для повышения максимальной мощности двигателя, а для улучшения протекания характеристики крутящего момента.


Рисунок 3- Система комбинированного наддува, предложенная Г. Шером

Другой известный способ подачи воздуха в цилиндры двигателя под повышенным давлением -- это использование волн давления выпускных газов в газодинамической машине «Компрекс» (наименование «Comprex» происходит от английских слов compression - сжатие и expanding - расширение) (Рисунок 4).

Принцип действия этой системы основан на том, что волна давления, проходящая через канал трубопровода, отражается на свободном конце отрицательно, т.е. как волна разрежения, а на закрытом конце как волна давления, и, наоборот, всасывающая волна на открытом конце отражается как волна давления, а на закрытом конце -- как волна всасывающая.

Система «Компрекс» состоит из ротора с осевыми каналами -- ячейками трапецеидального сечения, открытыми с торцов. Ротор, укрепленный в подшипниках и окруженный кожухом, приводится во вращение через ременную передачу от коленчатого вала двигателя. Мощность, необходимая для вращения ротора, невелика, т.к. она расходуется только на преодоление трения в подшипниках и вентиляционных потерь.


Рисунок 4- Схема устройства системы наддува «Компрекс» 1 -- выпускной трубопровод; 2 -- впускной трубопровод; ВНД -- воздух низкого давления; ВВД -- воздух высокого давления; ГВД -- газ высокого давления; ГНД -- газ низкого давления; Р -- ротор.

Воздушные и газовые каналы сходятся на торцевых сторонах корпуса. Осевые каналы -- ячейки ротора -- совпадают поочередно то с торцевыми стенками корпуса нагнетателя, то с впускными или выпускными трубопроводами, ведущими либо к двигателю, либо к атмосфере через воздухоочиститель или глушитель.

Привод агрегатов наддува может осуществляться:

  • 1) от коленчатого вала ДВС прямо или через отключаемое устройство («приводные нагнетатели»);
  • 2) от постороннего источника энергии, например, так называемый «е-привод» - от электродвигателя («электроподдерживаемый наддув»);

3) от турбины, использующей энергию отработавших газов ДВС (турбокомпрессоры).

В качестве приводных нагнетателей используют либо объемные нагнетатели (поршневые, роторно-шестеренчатые (типа «Рутс»), роторновинтовые, роторно-пластинчатые (шиберные)), либо лопаточные (как правило, центробежные). В приводном нагнетателе типа «Рутс» (Рисунок 5) два ротора особой формы, оси которых связаны между собой, при помощи шестерен соединенные с ведущей шестеренкой нагнетателя, которая, в свою очередь, связана со шкивом, приводимым в движение коленчатым валом посредством ременчатой передачи. Вращающиеся в противоположных направлениях роторы буквально «всасывают» воздух через входное отверстие, проталкивая воздушные потоки в т. н. распределительный отсек.


Рисунок 5- Приводной нагнетатель типа «Рутс»

Другой представитель механических нагнетателей - винтовой (нагнетатель Линхольма) по своей форме и структуре очень похож на нагнетатель Рутса (Рисунок 6), но на поверку отличается от него кардинально.

Рисунок 6- Приводной нагнетатель Линхольма

Формы роторов винтового нагнетателя более заострены, а сами они напоминают саморезы или винты мясорубки. При вращении роторов воздух, попадающий внутрь нагнетателя, прогоняется через этот конвейер спиралей и к выходу из корпуса уже находится в сжатом состоянии. Кроме того, воздух сжимается уже внутри устройства, а это значит, что неоткуда будет взяться тем силам противодействия, что выталкивают воздух назад в нагнетателе типа «Рутс».

Приводные центробежные нагнетатели (Рисунок 7) выполнены в форме улитки и обладают примерно теми же свойствами, что и турбины.


Рисунок 7- Приводной центробежный нагнетатель

Воздух, попадая в корпус нагнетателя, подхватывается лопастями рабочего колеса и, раскручиваясь, центробежными силами прижимается к внешним стенкам корпуса. На этом этапе воздушный поток достигает огромной скорости, но пока его давление слишком мало. Затем при помощи диффузора достигается обратный эффект: при выходе из нагнетателя скорость воздушного потока уменьшается, а давление, наоборот, возрастает, за счет «поджимающего» сзади воздуха. Эффективность центробежных нагнетателей пропорциональна оборотам двигателя. На низких оборотах прирост мощности практически не ощущается (хотя он и больше, чем у той же турбины), зато на средних и высоких мощность взмывает вверх.

Двигатели с газотурбинным наддувом часто называют «турбопоршневыми двигателями» или «комбинированными двигателями».

У турбокомпрессора (Рисунок 8) колесо компрессора и колесо турбины сидят на одном валу. Энергия потока отработавших газов, которая в обычных двигателях не используется, преобразовывается здесь в крутящий момент - выходящие из цилиндров двигателя отработавшие газы подаются на колесо турбины, где их кинетическая энергия преобразуется в механическую энергию вращения (крутящий момент). Колесо компрессора засасывает свежий воздух через воздушный фильтр, сжимает его и подает в цилиндры двигателя. Количество топлива, которое можно смешать с воздухом, при этом можно увеличить, что позволяет двигателю развивать большую мощность. Существует также множество других конструкций турбокомпрессоров.


Рисунок 8- Турбокомпрессор

Оглавление - - Назначение системы наддува Форсирование двигателя Типы систем наддува. Инерционный и волновой наддув Типы систем наддува. Электрический и Механический наддув. - Механический наддув. Поршневой наддув - Механический наддув. Мембранный наддув - Механический наддув. Винтовой наддув - Механический наддув. Система наддува ROOTS - Принцип работы системы ROOTS - Схема насосного действия роторов в системе ROOTS Типы систем наддува. Турбонаддув. Устройство турбонаддува. Принцип действия турбонаддува. Регулировка турбонаддува в бензиновом двигателе. - Регулирование турбонаддува с перепуском ОГ - Регулирование турбонаддува с изменяемой геометрией турбины - Регулирование турбонаддува с дросселированной турбиной

Оглавление - Устройство системы наддува в двигателе VW Golf 1. 4 TSI Схема работы наддува двигателя VW Golf 1. 4 TSI Диапазон работы компрессоров Скоростные характеристики двигателя VW Golf 1. 4 TSI Схема прироста мощности двигателя VW Golf 1. 4 TSI Элементы системы наддува. Турбокомпрессор. Элементы системы наддува. Выпускной коллектор. Элементы системы наддува. Охладитель нагнетаемого воздуха. Элементы системы наддува. Вестгейт. Элементы системы наддува. Клапан Blow-off. Элементы системы наддува. Система управления. Многоступенчатый наддув. Переключаемый наддув. Двухступенчатый наддув.

Форсирование двигателя - увеличение частоты вращения коленчатого вала - увеличение коэффициента наполнения Система наддува используется, как средство увеличения КПД двигателя: Повысить термический КПД - увеличение степени сжатия - большой риск возникновения детонации - сложная кинематика механизма Повысить индикаторный КПД: - оптимальное соотношение смеси: топлива и воздуха - качественное приготовление смеси - уменьшение потерь тепла

Форсирование двигателя Повысить эффективный КПД: - уменьшение длины юбки поршня, количества и высоты колец - Уменьшение количества приводимых от коленчатого вала агрегатов - уменьшение потерь на трение в двигателе - обеспечение быстрого прогрева двигателя и поддержанием оптимальной температуры при работе.

Типы систем наддува Инерционный наддув- давление в тракте создается при помощи набегающего потока воздуха Преимущества: сглаживает завихрения воздушного потока. эффективен при высоких скоростях Недостатки: быстро засоряется воздушный фильтр необходима определенная настройка системы питания. Волновой наддув- повышение коэффициента наполнения, за счет перепада давлений, между открытыми впускным и выпускным клапанами в фазе продувки за счет использования волновых эффектов Преимущества: эффективен при очень узком диапазоне оборотов Недостатки: Высокая стоимость.

Типы систем наддува Электрический наддув- требует мощного электродвигателя Преимущества: - Доступность - Прост в эксплуатации Недостатки: - Малая эффективность - Проблема обеднение подаваемой топливовоздушной смеси Механический наддув - в котором требуемая на сжатие воздуха мощность отбирается от коленчатого вала двигателя (механическая связь двигатель/нагнетатель). Преимущества: - Существенно повышает наполнение цилиндров топливовоздушной смесью - Понижает степень сжатия, что понижает детонацию - Усиление шатунно-поршневой группы Недостатки: - Забирает часть мощности с двигателя на вращение крыльчаток компрессора - Высокая стоимость

Типы систем наддува. Механический наддув. Поршневой нагнетатель поршень сжимает воздух, который потом подается через выпускной клапан к цилиндрам двигателя. 1. 2. 3. 4. 5. Впускной клапан Выпускной клапан Поршень Приводной (коленчатый)вал Картер нагнетателя

Механический наддув. Мембранный нагнетатель мембрана сжимает воздух, который через выпускной клапан подается в двигатель 1. 2. 3. 4. Впускной клапан Выпускной клапан Мембрана Приводной (кулачковый) вал

Механический наддув. Винтовой нагнетатель. воздух сжимают две лопасти, имеющие форму винта и вращающиеся на встречу другу 1. 2. 3. 4. Приводной вал Подача воздуха на сжатие Подача сжатого воздуха Винтообразные лопасти

Механический наддув. Нагнетатели системы ROOTS основу данной конструкции представляют два вращающихся ротора, приводимых в движение шестернями. 1. Корпус нагнетателя 2. Ротор - - Преимущества: Нагнетатель обеспечивает более высокий крутящий момент при более низком числе оборотов Имеет меньшее запаздывание по времени Хорошая чувствительность Недостатки: Давно не используется

Типы систем наддува Турбонаддув - в котором требуемая на сжатие воздуха мощность отбирается от ОГ (газодинамическая связь двигатель/нагнетатель); Преимущества: - Высокие температуры, приводят к более эффективной работе - Замена кривошипно-шатунного, деталей системы топливо отдачи, впускного и выпускного коллектора Недостатки: - Еще большая стоимость по сравнению с механическим нагнетателем - Отбирает часть мощности двигателя за счет возрастания противодавления на выпуске - Проблема инерционности - Высокий износ подшипников Различают два принципа наддува - Наддув с постоянным давлением - турбина может пропускать больше отработавших газов, при меньшем давлении, в области повышенных нагрузок двигателя Сокращает расход топлива Импульсный наддув обеспечивает более высокий крутящий момент на низких частотах вращения коленчатого вала

Устройство турбонаддува 1. Канал подачи ОГ 2. Крыльчатка турбины 3. Подвижная лопатка соплового аппарата 4. Патрубок подачи разрежения 5. Кольцо регулирования подвижных лопаток соплового аппарата 6. Подача смазки 7. Подача свежего воздуха к нагнетателю 8. Подача сжатого воздуха к двигателю

Регулировка турбонаддува в бензиновом двигателе. 1 - датчик частоты вращения коленчатого вала; 2 - охладитель наддувоч-ного воздуха; 3 - датчик давления наддува; 4 - клапан перепуска воздуха; 5 - калиброванное отверстие; 6 - измеритель расхода воздуха; 7 - соленоидный клапан; 8 - сервопривод перепускного клапана (мембранное устройство); 9 - турбокомпрессор; 10 - клапан перепуска газов мимо турбины; 11 - выпускной коллектор; 12 - датчик детонации; 13 - микропроцессор; 14 - датчик-указатель положения дроссельной заслонки; 15 - впускной коллектор; 16- датчик температуры воздуха.

Регулирование турбонаддува Для того, чтобы при больших скоростях отработавших газов, нагнетатель, не перегружали двигатель и сам не выходил из строя, давление наддува необходимо регулировать, для этого используют три конструктивных варианта: - Нагнетатель с перепуском отработавших газов при высоких нагрузках на двигатель, часть потока отработавших газов, направляется мимо турбины, прямо в систему выпуска отработавших газов. 1. Электропневматический преобразователь давления наддува 2. Вакуумный насос 3. Исполнительный механизм перепускного клапана 4. Корпус турбины 5. Перепускной клапан 6. Канал подачи ОГ к турбине 7. Канал подачи сжатого воздуха во впускной тракт 8. Газовая турбина 9. Компрессор

Регулирование турбонаддува Нагнетатель с изменяемой геометрией турбины дает возможность ограничить поток отработавших газов через турбину при высокой частоте вращения коленчатого вала а- Положение направляющих лопаток при высокой скорости потока ОГ b- Положение направляющих лопаток при низкой скорости потока ОГ 1. Крыльчатка турбины 2. Управляющее кольцо 3. Подвижные направляющие лопатки соплового аппарата 4. Управляющий рычаг 5. Управляющий пневматический цилиндр 6. Поток ОГ Высокая скорость потока ОГ Низкая скорость потока ОГ

Регулирование турбонаддува с изменяемой геометрией турбины Преимущества: - Возможность регулирования поступления потока отработавших газов через крыльчатки турбины - Безопасен, при отказе системы управления, ни нагнетатель, ни двигатель не повреждается. Недостатки: - Используется, только на дизельных двигателях.

Регулирование турбонаддува. Нагнетатель с изменяемой геометрией турбины Налаживающее кольцо Поддержив ающее кольцо Ведущая пластина вал Переменная лопасть Изменение контроля Контролирующа я пластина Соединение с вакуумной единицей

- Регулирование турбонаддува Нагнетатель с дросселированной турбиной регулировочная заслонка постепенным открытием подводимых каналов изменяет в этой конструкции проходное сечение для потока отработавших газов к турбине а - открыт один подводной канал b - открыты два подводных канала 1. Газовая турбина 2. Подводной канал 3. Подводной канал 4. Регулировочная заслонка 5. Перепускной канал 6. Тяга управления заслонкой

Регулирование турбонаддува Нагнетатель с дросселированной турбиной Преимущества: - Способность регулирования частоты вращения вала турбины - Наличие перепускного клапана, дает возможность отвести поток ОГ от турбины.

Аномальное сгорание - топлива Детонация – очень быстрое сгорание топлива в точках, удаленных от свечи, сопровождаемое резким местным перегревом и перегрузкой деталей двигателя. - Калильное зажигание – преждевременное воспламенение смеси от перегретых деталей камеры сгорания. Последствия аномального сгорания топлива - Прогар поршня, - Прогар гильзы, - Закоксовывание масла, - Перегрев двигателя.

Устройство системы наддува в двигателе VW Golf 1. 4 FSI Из воздушного фильтра (1) воздух поступает в компрессор (2), затем в Турбонагнетатель (3), а оттуда через трубопровод интеркулера (4) во впускной коллектор (5).

Элементы системы наддува 1. Турбокомпрессор (турбина) – нагнетает воздух в двигатель под давлением. увеличивает мощность двигателя Подача масла корпус Переменная лопасть Выхлопной выход Колесо турбины Поток воздуха из двигателя Налаживающее кольцо Нагнетающее колесо Поступающий воздух

Элементы системы наддува 2. Выпускной коллектор присоединяет турбину к двигателю Коллекторы выполняются из чугуна или из нержавеющей жаропрочной стали

Элементы системы наддува 3. Охладитель наддувного воздуха похоже на радиатор устанавливается между турбиной и впускным коллектором предназначено для охлаждения бывают типы «воздух-воздух» и «воздух-вода» .

Элементы системы наддува 4. Вестгейт (wastegate) – перепускной клапан стравливает лишнее давление выхлопных газов до турбины бывают различного диаметра проходного сечения (38 – 60 мм) стравливают газы в атмосферу либо в выпускную систему после турбины.

Элементы системы наддува 5. Клапан BLOW-OFF устанавливается между турбиной и впускным трубопроводом стравливает лишнее давление воздуха при переключении передач

Элементы системы наддува 6. Система управления. Устанавливается для управления подачей топлива и картой зажигания. Существуют системы управления (АБИТ и др.) которые можно настраивать под конкретный автомобиль.

Многоступенчатый наддув позволяет: существенно расширить пределы регулирования мощности, удается улучшить, как подачу воздуха в цилиндры, так и удельный расход топлива Переключаемый наддув При увеличивающейся нагрузке на двигатель, есть возможность подключения одного или нескольких нагнетателей. Преимущества - достижение двух, или больше, максимумов КПД Недостатки - Дороговизна системы, переключения нагнетателей

Двухступенчатый наддув последовательное подключение двух турбонагнетателей различной мощности, оснащенных байпасным регулированием. Преимущества: - быстрота достижения высокого уровня наддува - простота регулирования 1. Ступень низкого давления (турбонагнетатель с охлаждением наддувочного воздуха) 2. Ступень высокого давления (турбонагнетатель с охлаждением наддувочного воздуха) 3. Впускной коллектор 4. Выпускной коллектор 5. Перепускной клапан 6. Перепускная магистраль

Просмотров