Импульсный регулируемый стабилизатор напряжения. Линейный стабилизатор напряжения или тока LM317 Регулируем и ток и напряжение

Приставка к блоку питания

Это преобразователь задумывался, как приставка, позволяющая расширить диапазон напряжений лабораторного блока питания, рассчитанного на выходное напряжение 12 вольт и ток 5 ампер. Принципиальная схема преобразователя показана на рисунке 1.

Основой устройства является микросхема однотактного широтно-импульсного контроллера UC3843N, включенная по типовой схеме. Непосредственно эта схема бала заимствована у немецкого радиолюбителя Георга Тиф (Tief G. Dreifacher Step-Up-Wandler. Stabile Spennunger fϋr den FieldDay). Данные на русском языке на эту микросхему можно посмотреть в справочнике «Микросхемы для импульсных источников питания и их применение» издательства «Додэка» на странице 103. Схема не сложная и при исправных деталях и правильном монтаже, начинает работать сразу же. Регулировка выходного напряжения преобразователя осуществляется при помощи подстроечного резистора R8. Но при желании, его можно поменять на резистор переменный. Величину выходного напряжения можно изменять от 15 до 40 вольт, при номиналах резисторов R8, R9, R10, указанных на схеме. Данный преобразователь был испытан с паяльником, рассчитанным на 24 вольта и мощностью 40 Вт.
И так:

Напряжение выхода ……………… 24 В
Ток нагрузки составил ……....... 1,68 А
Мощность нагрузки ………………. 40,488 Вт
Напряжение входа ………………... 10,2 В
Общий ток потребления ………. 4,65 А
Общая мощность …………………... 47,43 Вт
Получившийся КПД ………………... 85%
При этом температура активных компонентов схемы была в районе 50 градусов.

При этом ключевой транзистор и диод с барьером Шоттки имеют небольшие радиаторы. В качестве ключевого транзистора применен транзистор IRFZ34, имеющий сопротивление открытого канала 0,044 Ом, а в качестве диода применен один из диодов диодной сборки S20C40C, выпаянной из блока питания старого компьютера. На печатной плате предусмотрена коммутация диодов при помощи перемычки. Можно применить и другие диоды с барьером Шоттки с прямым током не менее чем в два раза превышающим ток нагрузки. Дроссель намотан на желтом с белым кольце из распыленного железа, так же взятым из блока питания ПК. Про такие сердечники можете почитать в брошюре Джима Кокса. Скачать ее можно из Сети. Вообще советую скачать эту статью и полностью прочитать. Много полезного материала по дросселям.

Магнитная проницаемость такого кольца равна 75, а его размеры – D = 26,9 mm; d = 14,5 mm; h = 11,1 mm. Обмотка дросселя имеет 24 витка любого обмоточного провода диаметром 1,5 мм.

Все детали стабилизатора установлены на печатной плате, причем с одной стороны установлены все «высокие» детали, а с другой – все, так сказать, «низкорослые». Рисунок печатной платы показан на рисунке 2.

Первое включение собранного устройства можно производить без ключевого транзистора и убедиться в работоспособности ШИМ-контроллера. При этом на выводе 8 микросхемы должно быть напряжение 5 вольт, это напряжение внутреннего источника опорного напряжения ИОН. Оно должно быть стабильны при изменении напряжения питания микросхемы. Стабильной должна быть и частота, и амплитуда пилообразного напряжения на выходе 4 DA1. Убедившись в работоспособности контроллера можно впаять и мощный транзистор. Все должно работать.

Не забывайте, что ток нагрузи стабилизатора, должен быть меньше тока, на который рассчитан ваш блок питания и его величина зависит от выходного напряжения стабилизатора. Без нагрузки на выходе стабилизатор потребляет ток примерно равный 0,08 А. Частота импульсной последовательности управляющих импульсов без нагрузки, находится в районе 38 кГц. И еще немного, если будете рисовать печатную плату сами, ознакомьтесь с правилами монтажа микросхемы по ее документации. Стабильная и безотказная работа импульсных устройств зависит не только от качественных деталей, но и в правильной разводке проводников печатной платы. Успехов. К.В.Ю.

Общим недостатком компенсационных стабилизаторов напряжения является низкий КПД из-за потерь в транзисторах регулирующего элемента, что, кроме того, требует мощных теплоотводов, значительно превышающих по габаритам и массе сами стабилизаторы. Более прогрессивным техническим решением являются импульсные стабилизаторы напряжения (ИСН), в которых транзисторы регулирующих элементов работают в ключевом режиме. При использовании высокочастотных транзисторов проблема КПД и массо-габаритных характеристик в таких стабилизаторах решается достаточно радикально.

Существуют три основные схемы ИСН : последовательный ИСН понижающего типа (рис. 12.15), параллельный ИСН повышающего (рис. 12.16) и параллельный инвертирующего (рис. 12. 17) типа. Все три схемы содержат накопительный дроссель L, регулирующий элемент 1, блокировочный диод VD, элементы управления 2, 3 и конденсатор фильтра С.


Импульсный последовательный стабилизатор понижающего типа выполняется по структурной схеме, приведенной на рис. 12.15, в которой регулирующий элемент 1 и дроссель L включены последовательно с нагрузкой Rn. В качестве РЭ используется транзистор, работающий в ключевом режиме. При открытом в течение времени Т„ транзисторе энергия от входного источника постоянного тока Ui (или выпрямителя с выходным напряжением Uo) передается в нагрузку через дроссель L, в котором накапливается энергия. При закрытом в течение времени Тп транзисторе накопленная в дросселе энергия через диод VD передается в нагрузку. Период коммутации (преобразования) равен Т=Ти+Тп. Частота коммутации (преобразования) F=1/T. Отношение длительности открытого состояния транзистора, при котором генерируется импульс напряжения длительностью Ти, к периоду коммутации Т называется коэффициентом заполнения Кз=Ти/Т.

Таким образом, в импульсном стабилизаторе регулирующий элемент 1 преобразует (модулирует) входное постоянное напряжение Ui в серию последовательных импульсов определенной длительности и частоты, а сглаживающий фильтр, состоящий из диода VD, дросселя L и конденсатора С, демодулирует их в постоянное напряжение Uo. При изменении выходного напряжения Uo или тока в нагрузке Rn в импульсном стабилизаторе с помощью цепи обратной связи, состоящей из измерительного элемента 3 и схемы управления 2, длительность импульсов изменяется таким образом, чтобы выходное напряжение Uo оставалось неизменным (с определенной степенью точности).

Импульсный режим работы позволяет существенно уменьшить потери в регулирующем элементе и тем самым повысить КПД источника питания, уменьшить его массу и габариты. В этом состоит основное преимущество импульсных стабилизаторов перед компенсационными стабилизаторами непрерывного действия.

Импульсный параллельный стабилизатор (повышающего типа) выполняется по структурной схеме на рис. 12.16, в которой регулирующий элемент 1 подключен параллельно нагрузке Rn. Когда регулирующий транзистор открыт, ток от источника питания Ui протекает через дроссель L, запасая в нем энергию. Диод VD при этом находится в закрытом состоянии и поэтому не позволяет конденсатору С разрядиться через открытый регулирующий транзистор. Ток в нагрузку в этот промежуток времени поступает только от конденсатора С. В момент времени, когда регулирующий транзистор закрывается, ЭДС самоиндукции дросселя L суммируется с входным напряжением и энергия дросселя передается в нагрузку, при этом выходное напряжение оказывается больше входного напряжения питания Ui. В отличие от схемы на рис. 12.15 здесь дроссель не является элементом фильтра, а выходное напряжение становится больше входного на величину, определяемую индуктивностью дросселя L и временем открытого состояния регулирующего транзистора (или скважностью управляющих импульсов).

Схема управления стабилизатором на рис. 12.16 построена таким образом, что, например, при повышении входного напряжения питания Ui уменьшается длительность открытого состояния регулирующего транзистора на такую величину, что выходное напряжение Uo остается неизменным.

Импульсный параллельный инвертирующий стабилизатор выполняется по структурной схеме, приведенной на рис. 12.17. В отличие от схемы на рис. 12.16 здесь дроссель L включен параллельно нагрузке Rn, а регулирующий элемент 1 - последовательно с ней. Блокирующий диод отделяет конденсатор фильтра С и нагрузку Rn от регулирующего элемента по постоянному току. Стабилизатор обладает свойством изменения (инвертирования) полярности выходного напряжения Uo относительно полярности входного напряжения питания.

Импульсные стабилизаторы в зависимости от способа управления регулирующим транзистором могут выполняться с широтно-импульсной модуляцией (ШИМ), частотно-импульсной модуляцией (ЧИМ) или релейным управлением. В ШИМ-ста-билизаторах в процессе работы изменяется длительность импульса Ти, а частота коммутации остается неизменной; в ЧИМ-стабилизаторах изменяется частота коммутации, а длительность импульса Ти остается постоянной; в релейных стабилизаторах в процессе регулирования напряжения изменяется как длительность импульсов, так и частота их следования.

Наибольшее распространение на практике получил последовательный ИСН (рис. 12.15), в котором накопительный дроссель одновременно является элементом сглаживающего LC-фильтра. В стабилизаторах на рис. 12.16 и 12.17 дроссель L не участвует в сглаживании пульсации выходного напряжения. В этих схемах сглаживание пульсации достигается только за счет увеличения емкости конденсатора С, что приводит к увеличению массы и габаритов фильтра и устройства в целом.

Статическая регулировочная характеристика, определяемая для стабилизатора на рис. 12.15 по формуле Uo/Ui=Kз (1 - Кг), представляет собой прямую, наклон которой зависит (без учета потерь в регулирующем транзисторе и диоде) от отношения активных сопротивлений дросселя и нагрузки Kг=Rd/Rn. Напряжение Uo на нагрузке определяется относительной длительностью управляющих импульсов (при постоянном Ui) и не может быть больше напряжения питания, а линейность данной характеристики соответствует условиям устойчивой работы ИСН.

Рассмотрим основные элементы ИСН на рис. 12.15. Начнем с основного блока, схема которого показана на рис. 12.18.


Блок включает в себя силовую часть и регулирующий элемент на транзисторе VT1, управляемый ключом на транзисторе VT2 (диод VD2 служит для защиты базового перехода VT2 при большом отрицательном входном сигнале управления). Сопротивление резистора R1 выбирается из условия обеспечения закрытого состояния транзистора VT1 (100...900 Ом), a R2 - ориентировочно из условия kbUi=R2 Ikmax где k=l,5...2 - коэффициент запаса по насыщению; b, Ikmax - коэффициент усиления тока и максимальный импульсный коллекторный ток транзистора VT1. Аналогичным образом выбирается сопротивление резистора R3, но при этом в расчетах Ui заменяется амплитудой управляющего импульса функционального генератора. Отметим, что при выборе количества транзисторов РЭ можно руководствоваться рекомендациями, приведенными для схемы на рис. 12.12.

Исходными данными для выбора параметров схемы на рис. 12.18 являются:

напряжение Ui и пределы его изменения; внутреннее сопротивление Ri источника Ui; номинальное выходное напряжение стабилизатора Uo и допустимые пределы его регулировки; максимальный Inmax и минимальный Imin токи нагрузки, допустимая амплитуда пульсации выходного напряжения стабилизатора; коэффициент стабилизации Кn и внутреннее сопротивление Ro; максимальный температурный уход напряжения Uo и др. Порядок выбора параметров следующий:

1. Выбираем частоту преобразования F (до 100 кГц, для модели - единицы килогерц) и принимаем ориентировочно КПД=0,85...0,95.

2. Определяем минимальное и максимальное значения относительной длительности (коэффициента заполнения) импульса напряжения на входе фильтра:


3. Из условия сохранения режима непрерывности токов дросселя определяем его

минимальную индуктивность


4. Вычисляем произведение LC по заданному значению напряжения пульсации U„


откуда затем находим емкость конденсатора С.

Произведение LC определяет не только уровень пульсации, но и характер переходных процессов выходного напряжения после включения стабилизатора.

На рис. 12.19 показаны результаты моделирования схемы на рис. 12.18 при следующих данных: F=1 кГц, К,=0,5, Rn=100 Ом, L=200 мГн, С=100 мкФ (для рис. 12.19, а) и С=1 мкФ (для рис. 12.19, б). Как видно из рисунков, при сравнительно большом значении произведения LC переходная характеристика исследуемой схемы имеет колебательный характер, что приводит к скачкам выходного напряжения, которые могут оказаться опасными для потребителя (нагрузки).


Перейдем к рассмотрению следующего функционального узла ИСН - схемы управления и измерительного элемента. При этом целесообразно рассмотреть характеристики используемых в ИСН модуляторов.

Импульсные стабилизаторы с ШИМ по сравнению со стабилизаторами двух других типов имеют следующие преимущества:

О обеспечивается высокий КПД и оптимальная частота преобразования независимо от напряжения первичного источника питания и тока нагрузки; частота пульсации на нагрузке является неизменной, что имеет существенное значение для ряда потребителей электроэнергии;

О реализуется возможность одновременной синхронизации частот преобразования неограниченного числа ИСН, что исключает опасность возникновения биений частот при питании нескольких ИСН от общего первичного источника постоянного тока. Кроме того, при работе ИСН на нерегулируемый преобразователь (например, усилитель мощности) возможна синхронизация частот обоих устройств.

Недостатком ИСН с ШИМ по сравнению со стабилизатором релейного типа является более сложная схема управления, содержащая обычно дополнительный задающий генератор.

Импульсные стабилизаторы с ЧИМ, не имея существенных преимуществ перед другими типами ИСН, обладают следующими недостатками:

О сложность реализации регуляторов частоты в широких пределах, особенно при больших изменениях напряжения питания и тока нагрузки;

О отсутствие возможности реализации отмеченных выше преимуществ системы регулирования с ШИМ.

Последний недостаток относится и к релейным (или двухпозиционным) ИСН, которые характеризуются также сравнительно большой пульсацией напряжения на нагрузке (в стабилизаторах с ШИМ или ЧИМ пульсации выходного напряжения принципиально могут быть сведены к нулю, что невозможно достичь в релейных стабилизаторах).

В общем случае блок 3 (рис. 12.20) содержит делитель напряжения, источник опорного напряжения ИОН, сравнивающий элемент и усилитель рассогласования. Эти элементы выполняют такие же функции, что и в компенсационных стабилизаторах. Для ИСН с ШИМ к этим устройствам добавляются формирователь синхронизирующего напряжения (задающий генератор) и пороговое устройство, с помощью которых осуществляется формирование модулированных по длительности импульсов. Изменение длительности управляющего импульса осуществляется модуляцией его переднего или заднего фронта.


При модуляции переднего фронта линейно изменяющееся напряжение синхронизации на каждом периоде нарастает, а при модуляции заднего фронта управляющее напряжение в каждом периоде уменьшается. При модуляции фронтов напряжение синхронизации на каждом периоде нарастает и спадает. Этот вид модуляции по сравнению с односторонней модуляцией позволяет реализовать более быстродействующие ИСН, так как в этом случае мгновенное значение управляющего напряжения влияет на формирование фронтов.

Коэффициент передачи схемы управления, устанавливающий связь между изменениями относительной длительности импульсов на входе сглаживающего фильтра и напряжения на нагрузке (для ШИМ), равен


коэффициенты передачи делителя напряжения и усилителя рассогласования соответственно; Uy - амплитуда синхронизирующего напряжения.

Полная схема ИСН с элементами ШИМ показана на рис. 12.20. Делитель напряжения выполнен на резисторах R3, R4, источник опорного напряжения - на резисторе R5 и стабилитроне VD2, усилитель сигнала рассогласования - на OU1, пороговое устройство - на OU2. Поскольку оба ОУ питаются от однополярного источника, для согласования уровней в ключевом каскаде на VT2 в эмиттерную цепь включен параметрический стабилизатор (VD3, R8). В качестве задающего использован функциональный генератор в режиме треугольных импульсов; при модуляции по переднему фронту коэффициент заполнения (Duty cycle) выбирается максимальным (99%), при модуляции по заднему фронту - минимальным (0,1%), при модуляции по обоим фронтам - 50%. На рис. 12.21 показан результат моделирования процесса формирования управляющих импульсов при модуляции по переднему фронту.


Приведенные на рис. 12.21 результаты получены при Rn=100 Ом и Ui = 20 В. Как видно из рис. 12.21, сразу после включения источника питания формируются импульсы управления максимальной длительности, затем наступает продолжительная пауза из-за положительного скачка выходного напряжения Uo, затем опять идетт форсированный режим из-за отрицательного скачка Uo. Установившийся режим формирования управляющего импульса наступает через несколько периодов управляющего сигнала задающего генератора.

Контрольные задания

1. Для схемы на рис. 12.18 получите зависимость Uo=f(K,) при F=1 кГц, Uy=3 В (однополярность управляющих прямоугольных импульсов обеспечивается установкой на функциональном генераторе постоянной составляющей Offset=3 В, коэффициент заполнения К. задается выбором параметра Duty cycle), Ui=30 В, Rn=100 Ом, L=100 мГн, С=100 мкФ.

2. Для схемы на рис. 12.18 исследуйте зависимость формы переходных процессов от активного сопротивления потерь Rd включая последовательно с дросселем сопротивление 0,1... 10 Ом.

3. Исследуйте ИСН по схеме рис. 12.20 при модуляции заднего фронта, одновременно по переднему и заднему фронту и сравните результаты по времени выхода устройств в установившийся режим.

4. Для каждого способа формирования управляющих сигналов в установившемся режиме получите зависимость периода формирования управляющих сигналов от сопротивления нагрузки Rn в диапазоне 10... 1000 Ом и входного напряжения Ui в диапазоне 15...40 В.

Для нормального функционирования бытовой техники требуется стабильное напряжение. Как правило, в сети могут происходить различные сбои. Напряжение от 220 В может отклоняться, и в устройстве происходят сбои. В первую очередь под удар попадают лампы. Если рассматривать бытовую технику в доме, то могут пострадать телевизоры, аудиоаппаратура и прочие приборы, которые работают от электросети.

В данной ситуации на помощь людям приходит импульсный стабилизатор напряжения. Он в полной мере способен справиться со скачками, которые возникают ежедневно. Многих при этом волнует вопрос о том, как появляются перепады напряжения, и с чем они связаны. Зависят они главным образом от загруженности трансформатора. На сегодняшний день количество электроприборов в жилых домах все время увеличивается. Как результат, потребности в электричестве непременно растут.

Также следует учитывать, что к жилому дому могут быть проложены кабели, которые уже давно устарели. В свою очередь, квартирная проводка в большинстве случаев не рассчитана на большие нагрузки. Чтобы обезопасить свою технику в доме, следует более подробно ознакомиться с устройством стабилизаторов напряжения, а также принципом их работы.

Какие функции выполняет стабилизатор?

Главным образом импульсный стабилизатор напряжения служит контролером сети. Все скачки при этом отслеживаются им и устраняются. В результате техника получает стабильное напряжение. Электромагнитные помехи стабилизатором также учитываются, и на работу устройств не способны повлиять. Таким образом, сеть избавляется от перегрузок, и случаи практически исключаются.

Устройство простого стабилизатора

Если рассматривать стандартный импульсный напряжения, то в нем устанавливается только один транзистор. Как правило, их используют исключительно коммутирующего типа, поскольку на сегодняшний день они считаются более эффективными. В результате коэффициент полезного действия устройства можно сильно поднять.

Вторым важным элементом импульсного стабилизатора напряжения следует назвать диоды. В обычной схеме их можно встретить не больше трех единиц. Соединяются они друг с другом с помощью дросселя. Для нормальной работы транзисторов важными являются фильтры. Устанавливаются они в начале, а также конце цепочки. При этом блок регулирования отвечает за работу конденсатора. Его неотъемлемой частью принято считать резисторный делитель.

Как это работает?

В зависимости от типа устройства, принцип действия импульсного стабилизатора напряжения может отличаться. Рассматривая стандартную модель, можно сказать, что сначала ток подается на транзистор. На данном этапе происходит его преобразование. Далее в работу включаются диоды, в обязанности которых входит передача сигнала на конденсатор. При помощи фильтров, электромагнитные помехи отсеиваются. Конденсатор в этот момент сглаживает колебания напряжения и по дросселю ток через резистивный делитель вновь возвращается к транзисторам для преобразования.

Самодельные устройства

Сделать импульсный стабилизатор напряжения своими руками можно, но они будут иметь малую мощность. При этом резисторы устанавливаются самые обычные. Если использовать в приборе более одного транзистора, можно добиться высокого коэффициента полезного действия. Важным заданием в этом плане является установка фильтров. Именно они влияют на чувствительность прибора. В свою очередь, габариты устройства совсем не важны.

Стабилизаторы с одним транзистором

Импульсный стабилизатор постоянного напряжения данного типа способен похвастаться коэффициентом полезного действия на уровне 80 %. Как правило, он функционируют только в одном режиме и может справляться только с малыми помехами в сети.

Обратная связь в данном случае полностью отсутствует. Транзистор в стандартной схеме импульсного стабилизатора напряжения функционирует без коллектора. В результате на конденсатор сразу подается большое напряжение. Еще одной отличительной чертой приборов данного типа можно назвать слабый сигнал. Решить эту проблему смогут различные усилители.

В результате можно добиться лучшей работоспособности транзисторов. Резистор устройства в цепи в обязательном порядке должен находиться за В данном случае можно будет добиться более качественной работы устройства. В качестве регулировщика в цепи импульсный стабилизатор постоянного напряжения имеет блок контроля. Данный элемент способен ослаблять, а также повышать мощность транзистора. Происходит это явление при помощи дросселей, которые соединены с диодами в системе. Нагрузка на регулятор контролируется через фильтры.

Стабилизаторы напряжения ключевого типа

Зачем устанавливать компенсаторы?

Компенсаторы в большинстве случаев играют в стабилизаторе второстепенную роль. Связана она с регулировкой импульсов. Главным образом с этим справляются транзисторы. Однако свои преимущества у компенсаторов все же имеются. В данном случае многое зависит от того, какие приборы подключены к источнику питания.

Если говорить о радиооборудовании, то тут необходим особый подход. Связан он с различными колебаниями, которые воспринимаются таким прибором иначе. В этом случае компенсаторы способны помочь транзисторам в стабилизации напряжения. Установка дополнительных фильтров в цепи, как правило, ситуацию не улучшает. При этом они сильно влияют на коэффициент полезного действия.

Недостатки гальванических развязок

Гальванические развязки устанавливаются для передачи сигнала между важными элементами системы. Основной их проблемой можно назвать неверную оценку входного напряжения. Происходит это чаще всего с устаревшими моделями стабилизаторов. Контроллеры в них не способны быстро обрабатывать информацию и подключать в работу конденсаторы. В результаты диоды страдают в первую очередь. Если система фильтрации устанавливается за резисторами в электрической цепи, то они просто сгорают.

Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием "5A Lithium Charger CV CC Buck Step Down Power Module LED Driver ". Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 2-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.

Чертёж печатной платы представлен на рис. 2.

Согласно спецификации изготовителя модуль имеет следующие технические характеристики:

  • Входное напряжение 6-38 В постоянного тока.
  • Выходное напряжение регулируемое 1.25-36 В постоянного тока.
  • Выходной ток 0-5 А (регулируемый).
  • Мощность в нагрузке до 75 ВА.
  • КПД более 96%.
  • Имеется встроенная защита от перегрева и короткого замыкания в нагрузке.
  • Размеры модуля 61.7х26.2х15 мм.
  • Масса 20 грамм.

Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.

Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1. В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.

Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.

На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.

Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.

Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.

Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Линейный регулятор

LM317L

1 В блокнот
DA2 Микросхема XL4015 1 В блокнот
DA3 Операционный усилитель

LM358

1 В блокнот
VD1 Диод Шоттки

SK54

1 В блокнот
HL1 Светодиод Зеленый 1 В блокнот
HL2 Светодиод Красный 1 В блокнот
HL3 Светодиод Синий 1 В блокнот
С1, С6 Электролитический конденсатор 220 мкФ 50 В 2 В блокнот
С2-С4, С7 Конденсатор 0.47 мкФ 4 В блокнот
С5 Конденсатор 0.01 мкФ 1 В блокнот
R1 Резистор

680 Ом

1 В блокнот
R2 Резистор

220 Ом

1 В блокнот
R3 Резистор

330 Ом

1 В блокнот
R4 Резистор

18 кОм

1 В блокнот
R7 Резистор

100 кОм

1 В блокнот
R8 Резистор

10 кОм

1

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.

Недостатки прибора:

  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

Просмотров