Как проверить кварцевый резонатор. Кварцевый резонатор - структура, принцип работы, как проверить Самодельный прибор для проверки кварцевых резонаторов

Частотомер - полезный прибор в лаборатории радиолюбителя (особенно, при отсутствии осциллографа). Кроме частотомера лично мне часто недоставало тестера кварцевых резонаторов - слишком много стало приходить брака из Китая. Не раз случалось такое, что собираешь устройство, программируешь микроконтроллер, записываешь фьюзы, чтобы он тактировался от внешнего кварца и всё - после записи фьюзов программатор перестаёт видеть МК. Причина - "битый" кварц, реже - "глючный" микроконтроллер (или заботливо перемаркированый китайцами с добавлением, например, буквы “А" на конце). И таких неисправных кварцев мне попадалось до 5% из партии. Кстати, достаточно известный китайский набор частотомера с тестером кварцев на PIC-микроконтроллере и светодиодном дисплее с Алиэкспресса мне категорически не понравился, т.к. часто вместо частоты показывал то ли погоду в Зимбабве, то ли частоты "неинтересных" гармоник (ну или это мне не повезло).

Что такое генератор? Генератор – это по сути устройство, которое преобразует один вид энергии в другой. В электронике очень часто можно услышать словосочетание “генератор электрической энергии, генератор частоты , ” и тд.

Кварцевый генератор представляет из себя генератор частоты и имеет в своем составе . В основном кварцевые генераторы бывают двух видов:

те, которые могут выдавать синусоидальный сигнал

и те, которые выдают прямоугольный сигнал


Чаще всего в электронике используется прямоугольный сигнал

Схема Пирса

Для того, чтобы возбудить кварц на частоте резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца – это классический генератор Пирса , который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:


Пару слов о том как работает схема. В схеме есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?

В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку


Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салаге, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц в 15. Прививка набухала на пол руки)) И даже один раз меня водили сдавать кровь в подозрении на туберкулез, но как оказалось, не нашли. Оно и неудивительно;-).

Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд. Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса;-). Скажем так, “физическое ограничение”.

Первым делом нам надо подобрать катушку индуктивности . Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков


Весь процесс контролировал с помощью LC-метра , добиваясь номинала, как на схеме – 2,5 мГн. Если не доставало, прибавлял витки, если перебарщивал номинал, то убавлял. В результате добился вот такой индуктивности:


Его правильное название: .

Распиновка слева-направо: Сток – Исток – Затвор


Небольшое лирическое отступление.

Итак, кварцевый генератор мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф


Первым делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 Мегагерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).


Внизу в левом углу осциллограф нам показывает частоту:


Как вы видите 32,77 Мегагерц. Главное, что наш кварц живой и схемка работает!

Давайте возьмем кварц с частотой 27 Мегагерц:


Показания у меня прыгали. Заскринил, что успел:


Частоту тоже более-менее показал верно.

Ну и аналогично проверяем все остальные кварцы, которые у меня есть.

Вот осциллограмма кварца на 16 Мегагерц:


Осциллограф показал частоту ровнехонько 16 Мегагерц.

Здесь поставил кварц на 6 Мегагерц:


Ровно 6 Мегагерц

На 4 Мегагерца:


Все ОК.

Ну и возьмем еще советский на 1 Мегагерц. Вот так он выглядит:


Сверху написано 1000 Килогерц = 1МегаГерц;-)


Смотрим осциллограмму:


Рабочий!

При большом желании можно даже замерять частоту китайским генератором-частотомером :


400 Герц погрешность для старенького советского кварца не очень и много. Но лучше, конечно, воспользоваться нормальным профессиональным частотомером;-)

Часовой кварц

С часовым кварцем кварцевый генератор по схеме Пирса отказался работать.


“Что еще за часовой кварц?” – спросите вы. Часовой кварц – это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 2 15 . Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.

Принцип работы этой микросхемы такой: п осле того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду . А как вы помните, колебание один раз в секунду – это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название – .

В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый ряд других функций, типа будильника, календаря и тд. Такие микросхемы называется RTC (R eal T ime C lock) или в переводе с буржуйского Часы Реального Времени.

Схема Пирса для прямоугольного сигнала

Итак, вернемся к схеме Пирса. Предыдущая схема Пирса генерирует синусоидальный сигнал

Но также есть видоизмененная схема Пирса для прямоугольного сигнала

А вот и она:

Номиналы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 Мегагерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ. Точно не прогадаете.

Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.

Резистор R1 можно менять от 1 и до 20 МОм, а R2 от нуля и до 100 кОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.

Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит из шести инверторов, но использовать мы будем только один инвертор:


Вот ее распиновка:

Подключив к этой схеме часовой кварц, осциллограф выдал вот такую осциллограмму:


Кстати, вам эта часть схемы ничего не напоминает?

Не эта ли часть схемы используется для тактирования микроконтроллеров AVR ?

Она самая! Просто недостающие элементы схемы уже есть в самом МК;-)

Плюсы кварцевых генераторов

Плюсы кварцевых генераторов частоты – это высокая частотная стабильность. В основном это 10 -5 – 10 -6 от номинала или, как часто говорят, ppm (от англ. parts per million) - частей на миллион, то есть одна миллионная или числом 10 -6 . Отклонение частоты в ту или иную сторону в кварцевом генераторе в основном связано с изменением температуры окружающей среды, а также со старением кварца. При старении кварца, частота кварцевого генератора стает чуточку меньше с каждым годом примерно на 1,8х10 -7 от номинала. Если, скажем, я взял кварц с частотой в 10 Мегагерц (10 000 000 Герц) и поставил его в схему, то за год его частота уйдет примерно на 2 Герца в минус;-) Думаю, вполне терпимо.

В настоящее время кварцевые генераторы выпускают в виде законченных модулей. Некоторые фирмы, производящие такие генераторы, достигают частотной стабильности до 10 -11 от номинала! Выглядят готовые модули примерно так:


или так

Такие модули кварцевых генераторов в основном имеют 4 вывода. Вот распиновка квадратного кварцевого генератора:

Давайте проверим один из них. На нем написано 1 МГц


Вот его вид сзади:


Вот его распиновка:

Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на 8, а минусом на 4, с выхода 5 я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 Мегагерц, с очень небольшими выбросами.


Ну прям загляденье!

Да и китайский генератор-частотомер показал точную частоту:


Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок.

Сразу хотелось бы сказать, что проверить кварцевый резонатор с помощью мультиметра не получится . Для проверки кварцевого резонатора с помощью осциллографа необходимо подключить щуп к одному из выводов кварца, а земляной крокодил к другому, но такой способ не всегда даёт положительный результат , далее описано почему.
Одна из основных причин выхода из строя кварцевого резонатора - банальное падение, поэтому если перестал работать пульт от телевизора, брелок от сигнализации автомобиля, то первым делом необходимо его проверить. Проверить генерацию на плате не всегда получается потому, что щуп осциллографа имеет некоторую ёмкость, которая обычно составляет около 100pF, то есть, подключая щуп осциллографа, мы подключаем конденсатор номиналом 100pF. Так как номиналы ёмкостей в схемах кварцевых генераторов составляют десятки и сотни пикофарад, реже нанофарады, то подключение такой ёмкости вносит значительную ошибку в расчётные параметры схемы и соответственно может привести к срыву генерации. Ёмкость щупа можно уменьшить до 20pF, если установить делитель на 10, но и это не всегда помогает.

Исходя из выше написанного можно сделать вывод, что для проверки кварцевого резонатора нужна схема, при подключении к которой щупа осциллографа не будет срываться генерация, то есть схема должна не чувствовать ёмкость щупа. Выбор пал на генератор Клаппа на транзисторах, а для того чтобы не срывалась генерация к выходу подключён эмиттерный повторитель.


Если поставить плату на просвет видно, что с помощью сверла получаются аккуратненькие пятачки, если сверлить шуруповёртом, то почти аккуратненькие). По сути это тот же монтаж на пятачках, только пятачки не наклеиваются, а сверлятся.


Фотографию сверла можно увидеть ниже.


Теперь давайте перейдём непосредственно к проверке кварцев. Сначала возьмём кварц на 4.194304MHz.


Кварц на 8MHz.


Кварц на 14.31818MHz.


Кварц на 32MHz.


Хотелось бы несколько слов сказать про гармоники, Гармоники - колебания на частоте кратной основной, если основная частота кварцевого резонатора 8MHz, то гармониками в этом случае называют колебания на частотах: 24MHz – 3-я гармоника, 40MHz – 5-я гармоника и так далее. У кого-то мог возникнуть вопрос, почему в примере только нечётные гармоники, потому что кварц на чётных гармониках работать не может!!!

Кварцевого резонатора на частоту выше 32MHz у меня не нашлось, но даже этот результат можно считать отличным.
Очевидно, что для начинающего радиолюбителя предпочтителен способ без использования дорогостоящего осциллографа, поэтому ниже изображена схема для проверки кварца с помощью светодиода. Максимальная частота кварца, который удалось проверить с помощью этой схемы составляет 14MHz, следующий номинал который у меня был это 32MHz, но с ним генератор уже не запустился, но от 14MHz до 32MHz большой промежуток, скорее всего до 20MHz будет работать.

Колебаниям уделяется одна из самых важных ролей в современном мире. Так, даже существует так называемая теория струн, которая утверждает, что всё вокруг нас - это просто волны. Но есть и другие варианты использования данных знаний, и одна из них - это кварцевый резонатор. Так уж бывает, что любая техника периодически выходит из строя, и они тут не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как надо?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором называют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но между ними есть разница в пользу первого. Как известно, для характеристики колебательного контура используют понятие добротности. В резонаторе на основе кварцев она достигает очень высоких значений - в границах 10 5 -10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально расположенного прямоугольника, который с обеих сторон «зажат» пластинами. Внешне на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками. Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Способ № 1

Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество - легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон - 1-10 МГц.

Способ № 2

Для увеличения точности можно к выходу генератора подключить частотомер или осциллограф. Тогда можно будет рассчитать искомый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, причем как на гармониках, так и на основной частоте, что, в свою очередь, может дать значительное отклонение. Посмотрите на приведённые схемы (эту и предыдущую). Как видите, существуют разные способы искать частоту, и тут придётся экспериментировать. Главное - соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 - 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

Особенности проверок

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует довольно много способов вывести свой кварцевый резонатор из строя. С некоторыми самыми популярными стоит ознакомиться, чтобы в будущем избежать каких-то проблем:

  1. Падения с высоты. Самая популярная причина. Помните: всегда необходимо содержать рабочее место в полном порядке и следить за своими действиями.
  2. Присутствие постоянного напряжения. В целом кварцевые резонаторы не боятся его. Но прецеденты были. Для проверки работоспособности включите последовательно конденсатор на 1000 мФ - этот шаг возвратит его в строй или позволит избежать негативных последствий.
  3. Слишком большая амплитуда сигнала. Решить данную проблему можно разными способами:
  • Увести частоту генерации немного в сторону, чтобы она отличалась от основного показателя механического резонанса кварца. Это более сложный вариант.
  • Понизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор действительно из строя. Так, причиной падения активности может быть флюс или посторонние частицы (необходимо в таком случае его качественно очистить). Также может быть, что слишком активно эксплуатировалась изоляция, и она потеряла свои свойства. Для контрольной проверки по этому пункту можно на КТ315 спаять «трехточку» и проверить осцом (одновременно можно сравнить активность).

Заключение

В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой - и тогда работа кварцевого резонатора будет меньше беспокоить.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов

Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас - это просто волны. Но есть и другие варианты использования данных познаний, и одна из их - это кварцевый резонатор. Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором именуют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но меж ними есть разница в пользу первого. Как понятно, для свойства колебательного контура употребляют понятие добротности. В резонаторе на базе кварцев она добивается очень больших значений - в границах 10 5 -10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально размещенного прямоугольника, который с обеих сторон «зажат» пластинами. Снаружи на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо либо брусок. На него наносится как минимум два электрода, которые являются проводящими полосами. Пластинка закрепляется и имеет свою свою резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг либо изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна либо очень близка к своим значениям, то требуется наименьшее количество энергии при значимых различиях для поддержания функционирования. Сейчас можно перебегать к свету главной препядствия, из-за чего, фактически, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 метода, о которых и будет поведано.

Способ № 1

Читайте так же

Тут транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а потом сам импульс передаёт на аналоговый частотомер, который построен на 2-ух диодиках Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все другие элементы служат для стабильности работы схемы и чтоб ничего не перегорело. Зависимо от установленной частоты может изменяться напряжение, которое есть на конденсаторе С4. Это достаточно ориентировочный метод и его преимущество - легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но есть определённые ограничения: пробовать её на данной схеме следует исключительно в тех случаях, если она находится в ориентировочных рамках от 3-х до 10 МГц. Проверка кварцевых резонаторов , что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но дальше подвергнется рассмотрению чертеж, у которого спектр — 1-10 МГц.

Как проверить кварцевый резонатор

Обычная схема для проверки кварцевых резонаторов, а если добавить в схему мультиметр с возможностью измеря…

Проверка кварцевых резонаторов

Обычная схема для проверки работоспособности кварцевых резонаторов, а так же возможность проверки частоты…

Способ № 2

Для роста точности можно к выходу генератора подключить частотомер либо осциллограф. Тогда можно будет высчитать разыскиваемый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, при этом как на гармониках, так и на основной частоте, что, в свою очередь, может дать существенное отклонение. Поглядите на приведённые схемы (эту и предшествующую). Видите ли, есть различные методы находить частоту, и здесь придётся экспериментировать. Главное - соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Читайте так же

Данная схема дозволит найти, работоспособны ли два кварцевых резистора, которые работают в рамках от 1-го до 10 МГц. Также благодаря ей можно выяснить сигналы толчков, которые идут меж частотами. Потому вы можете не только лишь найти работоспособность, да и подобрать кварцевые резисторы, которые более подходят друг дружке по своим показателям. Схема реализована с 2-мя задающими генераторами. 1-ый из их работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтоб проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует надавить на кнопку SB1. Обозначенный показатель соответствует сигналу высочайшего уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено нужное значение для проверки (можно напряжение каждую проверку увеличивать на 0,1А-0,2В к рекомендованному в официальной аннотации по использованию механизма). При всем этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет пылать светодиод HL1. 2-ой механизм работает аналогично, и о нём будет докладывать HL2. Если их запустить сразу, то ещё будет пылать светодиод HL4.

Когда сравниваются частоты 2-ух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтоб потом сопоставить характеристики. Узреть зрительно это можно при помощи мерцания светодиода HL4. Для улучшения точности добавляют частотомер либо осциллограф. Если реальные характеристики отличаются на килогерцы, то для определения более частотного кварца нажмите на кнопку SB2. Тогда 1-ый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более частотный, ежели ZQ2.

При проверке всегда:

  1. Прочитайте аннотацию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует достаточно много методов вывести собственный кварцевый резонатор из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:

  1. Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
  2. Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ - этот шаг вернет его в строй либо дозволит избежать негативных последствий.
  3. Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
  • Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
  • Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).

Просмотров