Что такое терморезисторы и для чего они нужны. Принцип действия, характеристики и основные параметры термистора Конструкция характеристики и принцип работы терморезистора

Большинство рассмотренных выше температурных датчиков не особенно популярны среди радиолюбителей, занимающихся творчеством в домашних условиях или на работе. Причин этого несколько - это и большая себестоимость, существенные размеры и необходимость применять специальные (достаточно сложные) электронные узлы для обеспечения их работы. Электронные конструкции, которые в изобилии предлагают своим читателям журналы по радиоэлектронике, используют в качестве термодат- чиков, в основном, терморезисторы. О них и пойдет речь ниже.

Терморезистор - это устройство, сопротивление которого значительно изменяется с изменением температуры. Это рези- стивный прибор, обладающий высоким ТКС (температурным коэффициентом сопротивления) в широком диапазоне температур. Различают терморезисторы с отрицательным ТКС, сопротивление которых падает с возрастанием температуры, часто называемые термисторами, и терморезисторы с положительным ТКС, сопротивление которых увеличивается с возрастанием температуры. Такие терморезисторы называются позисторами. обоих типов изготавливают из полупроводниковых материалов, диапазон изменения их ТКС - (-6,5…+70)%/С. Тер- морезисторный эффект заключается в изменении сопротивления полупроводника в большую или меньшую сторону за счет убывз ния или возрастания его темпера!уоы Однако сам м<*чанизм из менения сопро "^вмо’-‘ия с г емперасурой отличен п. подобно! о явления в металлах (о чем и говорит факт уменьшения сопротивления при увеличении температуры], а особенности э»ого физического эффекта будут подробнее рассмотрены ниже.

Известно, что в 1833 году Фарадей обнаружил отрицательный ТКС у сульфида серебра, но отсутствие сведений о явлении в контактах металл-полупроводник препятствовало изготовлению приборов с воспроизводимыми характеристиками. В 30-х г одах двадцатого века у оксидов Ге 3 0 4 и UO ? ученые химики обнаружили высокий отрицательный температурный ‘коэффициент со противления. В начале 40-х этот ряд пополнился NiO, СоО, соединениями NiO Со? 0 3 -Мп у О¦;. Интервал удельных сопротивлений расширился благодаря добавлению о-‘сида меди Мп л 0 4 в соединение Ni0-Mn ; -.0;;.

с отрицательным ГКС изготавливаются из оксидов металлов с незаполненными электронными уровнями, и при низких температурах обмен электронами соседних ионов за трудняется, при этом электропроводность вещества мала. Если температура увеличивается, го электроны приобретают энергию в виде тепла, процесс обмена электронами у ионов становится интенсивнее, поэтому резко увеличивается подвижность носителей заряда. Другие терморезисторы имеют положитепьный температурный коэффициент сопротивления в некотором интервале температур. Такие терморезисторы на жаргоне радиотехников называют позисторагии.

Терморезсст^рм с положительным ТКС можно разделить на 2 группы:

1. из полупроводникового материала (обычно Si) в форме небольших пластин о дзумя выводами на противоположных сторонах. Их применение основано на том, что легированные кристаллы St (кремния) как гь тэс и р-типе имеют положительный ТКС при температуре от криогенных до 150°С и выше причем ТКС нрп комнаг-юй температуре примерно равен 0,8% на 1 С,

2. Терморезисторн с большим ТКС -.до 70% на 1 е С), но в более ограниченном диапазоне темпеоятур Материалом в данном случае является поликристаллический полупроводниковый титанат бария с большим изменением ТКС при температуре 120°С, соответствующей сегнетоэлектрической точке Кюри этого материала. Добавляя другие материалы, например, титанат свинца или стронций, такое изменение ТКС можно получить при температурах от -100 до +250°С. Можно также изменить наклон кривой сопротивления так, что большее изменение температур будет происходить в более узком интервале температур, например О…ЮО°С.

Устройство популярных терморезисторов

Температурная зависимость сопротивления является главной характеристикой терморезисторов, в значительной степени определяющей остальные характеристики этих изделий. Она амбивалентна на температурной зависимости удельного сопротивления полупроводника, из которого изготовлен данный терморезистор. Температурная зависимость сопротивления большинства типов отечественных терморезисторов с отрицательным ТКС во всем рабочем интервале температур определяется формулой

Примечание. Промежуточные значения номинальных сопротивлений соответствуют ряду Е6 с допуском ±20% (ММТ-1, КМТ-1); ряду Е12 с допусками ±10, ±20% (СТЗ-1).

Максимальная мощность рассеяния: КМТ-1: 1000 мВт ММТ-1, СТЗ-1: 600 мВт Температурный коэффициент сопротивления: КМТ-1: ~(4,2…8,4)%/°С ММТ-1: -(2,4…5,6)%/°С СТЗ-1: -(3,35…3,95)%/°С Коэффициент температурной чувствительности: КМТ-1: 3600…7200 К ММТ-1: 2060…4300 К СТЗ-1: 2870…3395 К Коэффициент рассеяния: 5 мВт/°С Коэффициент энергетической чувствительности: КМТ-1: 1 мВт ММТ-1, СТЗ-1: 1,3 мВт Постоянная времени: не более 85 с Температура окружающей среды: КМТ-1: от -60 до +155°С ММТ-1, СТЗ-1: от -60 до +125°С Относительная влажность воздуха:

КМТ-1, ММТ-1: до 98% при температуре ±25°С СТЗ-1: до 98%> при температуре +35°С Пониженное атмосферное давление: до 133 Па (1 мм рт. ст.) Минимальная наработка:

КМТ-1, ММТ-1: 15 000 часов СТЗ-1: 5 000 часов Срок сохраняемости:

КМТ-1, ММТ-1: 15 лет СТЗ-1: 12 лет

с отрицательным ТКС прямого подогрева бусинковые

ТР-4 - терморезисторы герметизированные изолированные - предназначены для использования в сигнализаторах уровня жидкости, измерения и регулирования температуры, а также для температурной компенсации элементов электрической цепи с положительным ТКС.

Масса: не более 0,3 г

Номинальное сопротивление: 1 -10 3 0м±20%.

Максимальная мощность рассеяния: 70 мВт

Коэффициент температурной чувствительности:

Температурный коэффициент сопротивления:

-(1,8…2,2)%/°С

Коэффициент температурной чувствительности: 0,15 мВт

Постоянная времени: не более 3 с

Предельные эксплуатационные данные:

Температура окружающей среды: от -60 до +200°С

Относительная влажность воздуха: до 98% при +35°С

Пониженное атмосферное давление:

до 0,00013 Па (Ю -6 мм рт. ст.)

Минимальная наработка: 20 000 часов

Срок сохраняемости: 15 лет.

Ограничение по частоте для применения данных терморезисторов в электронных устройствах составляет 1 кГц. В рабочем состоянии терморезисторы могут нагреваться до температуры 150…200°С. В схемах для ограничения пусковых токов (например, электродвигателей) этот прибор включают последовательно с нагрузкой, и нагревание выполняется за счет проходящего в цепи тока.

Кроме вышеперечисленных приборов популярны терморезисторы ТР-10, ТР-15. Пример полного условного обозначения в документации: терморезистор ТР-15-2200 Ом-1,2 Вт-ТУ11-97 АДПК.434.121.012ТУ. В этой аббревиатуре указаны тип, номинальное сопротивление, мощность рассеивания тепла при 25°С, технические условия завода-разработчика и производителя.

В табл. 1.1 приведены некоторые электрические параметры для терморезисторов ТР-15.

Таблица 1.1. Параметры терморезисторов ТР-15

Диапазон номинальных сопротивлений, 0м

Максимальная мощность, Вт

10…2200

10…2200

4,7…1000

4,7…1000

2,2…470

1,5…330

1,5…330

1,0…220

Промежуточные значения номинальных сопротивлений терморезисторов соответствуют ГОСТ 28884-90, то есть могут иметь значения 1,0; 1,5; 2,2; 3,3; 4,7; 6,8 (числовые коэффициенты умножаются на числа 10, 100, 1000). Допустимое отклонение сопротивления ±20%.

При нагреве до максимальной температуры сопротивление терморезисторов уменьшается более чем в 100 раз. Для некоторых приборов (в качестве примера) в табл. 1.2. приведены значения сопротивлений в нагретом состоянии при максимальной мощности рассеивания. Рабочий температурный диапазон для терморезисторов серии TP находится в пределах -60…+155°С. Допустимая мощность рассеяния при температурах выше +25°С пропорционально снижается по линейному закону до 0,25Р тах при максимальной рабочей температуре.

Существуют импортные аналоги, например, терморезисторы фирмы NTC (Negative Temperature Coefficient). Эти приборы выпускаются в различных корпусах, среди которых часть имеет

Таблица 1.2 Изменение со>ч–01ивления терморезистора ТР-15

при максимальном нагреве

Номинальное сопротивление при 25°С. Ом

Максимальная

мощность рассеяния Bi

Электрическое сопротивление при максимальной мощности рассеяния Ом,

не более:

крепления — это позволяв упростить задачу коне гру ктора – разработчика. Диапазон рабочих температур для этих приборов -55 , +) /’О С Внешний вид - в виде большой капли. для ограничения пусковых гокоь фирмы МТС представлено’ в габл 1.3.

Пример ночного обозначения зарубежных аналогов; В57 I53-S330-M здесь В?7 – фирменное обозначение терморе знечора. ! 53 S типовое обозначение, 330 кодовое обозна чениа сопротивления ‘де поспедняя цифр,? в обозначении указывает количество пулей, го ее гь УЮ со лвэ п. revei 33 Ом.

– I ОЧИОГ УЬ (;1.20%)

Таблица 1.3. NTC для ограничения пусковых токов

терморезистора

Сопротивление R, при 25°С, 0м

Точность

Максимальная мощность, Вт

Максимальный ток при 0…65°С, А

1; 2; 2,5; 4;5; 10

16; 12; 11; 9,5; 8,5; 7,5

с положительным ТКС - позисторы

СТ5-1, СТ6-1А, СТ6-1Б - терморезисторы негерметизи- рованные неизолированные - предназначены для измерения и регулирования температуры, противопожарной сигнализации, тепловой защиты, ограничения и стабилизации тока в электрических цепях постоянного тока.

Масса: не более 0,7 г

Диапазон номинальных сопротивлений: СТ5-1: 20…150 Ом СТ6-1 А: 40…400 Ом СТ6-1 Б: 180; 270 Ом

Примечание. Допуск для СТ6-1 Б: ±20%.

Максимальная мощность рассеяния: СТ5-1: 700 мВт СТ6-1 А: 1100 мВт СТ6-1Б: 800 мВт

Температурный коэффициент сопротивления, не менее:

СТ5-1: 20%/°С

СТ6-1 А: 10%/°С

СТ6-1Б: 15%/° С

Примерный температурный интервал положительного ТКС:

СТ5-1: от +120 до +200°С

СТ6-1 А: от +40 до +155°С

СТ6-1Б: от +20 до +125°С

Кратность изменения сопротивления в области положительного ТКС: не менее 10 3

Коэффициент рассеяния: 9 мВт/°С

Коэффициент энергетической чувствительности:

СТ5-1: 0,01 мВт

СТ6-1 А: 0,3 мВт

СТ6-1Б: 0,5 мВт

Постоянная времени: не более 20 с

Предельные эксплуатационные данные:

Температура окружающей среды:

СТ5-1: от-20 до+200°С

СТ6-1 А: от -60 до +155°С

СТ6-1 Б: от -60 до +125°С

Относительная влажность воздуха при +25°С:

СТ5-1: до 85%

СТ6-1А, СТ6-1Б: до 98%

Пониженное атмосферное давление: до 133 Па (1 мм рт. ст.)

Минимальная наработка:

СТ5-1: 3 000 часов

СТ6-1 А, СТ6-1 Б: 10 000 часов

Срок сохраняемости:

СТ5-1: 3 года

СТ6-1 А, СТ6-1Б: 10 лет

Особенности применения терморезисторов

При монтаже всех типов терморезисторов рекомендуется применять припой марки ПОС-61 (ГОСТ 21930-76). При пайке температура припоя должна быть 260±5°С, а время пайки не более 4 секунд. Пайка выводов терморезисторов должна производиться не ближе 10 мм от его корпуса.

На основе терморезисторов действуют системы дистанционного и централизованного измерения и регулирования температуры, системы теплового контроля машин и механизмов, схемы температурной компенсации, схемы измерения мощности ВЧ. находят применение в промышленной электронике и бытовой аппаратуре: рефрижераторах (холодильных камерах), автомобилях, электронагревательных приборах, телевизорах, системах центрального отопления и пр. В телевизорах часто используются терморезисторы с положительным ТКС для устройства размагничивания кинескопа. Самые первые устройства, где применялись терморезисторы - датчики для измерения и регулирования температуры. массово используются в различных устройствах не только в качестве датчиков температуры. После модификации их можно использовать для изменения времени задержки в широком интервале, в качестве конденсаторов или катушек индуктивности в низкочастотных генераторах, для защиты от выбросов напряжения в емкостных, индуктивных или резистивных схемах, в качестве ограничителей тока, напряжения, для измерения давления газа или теплопроводности. Также они используются в температурных датчиках, термометрах, практически в любой, связанной с температурными режимами, электронике. Применение терморезисторов в военной технике актуально и значимо. являются составной частью электронных систем контроля за температурой ракет стратегического назначения. В противопожарной технике действуют температурные датчики. Датчик содержит два терморезистора с отрицательным температурным коэффициентом, которые установлены на печатной плате в поликарбонатном корпусе. Один выведен наружу - открытый терморезистор, он быстро реагирует на изменение температуры воздуха. Другой терморезистор находится в корпусе и реагирует на изменение температуры медленнее. При стабильных условиях оба терморезистора находятся в термическом равновесии с температурой воздуха и имеют некоторое сопротивление. Если температура воздуха быстро повышается, то сопротивление открытого терморезистора становится меньше, чем сопротивление закрытого. Отношение сопротивлений терморезисторов контролирует электронная схема, и если это отношение превышает пороговый уровень, установленный на заводе, она выдает сигнал тревоги. Такой принцип действия называется «реакцией на скорость повышения температуры». Если температура воздуха повышается медленно, то различие сопротивлений терморезисторов незначительно. Однако эта разница становится выше, если соединить последовательно с закрытым терморезистором резистор с высокой температурной стабильностью. Когда отношение суммы сопротивлений закрытого терморезистора и стабильного резистора и сопротивления открытого терморезистора превышает определенный порог, возникает режим тревоги. Датчик формирует режим «Тревога» при достижении внешней температуры 60°С вне зависимости от скорости нарастания температуры.

Применение терморезисторов в качестве датчиков температуры имеет не только плюсы, но и свои минусы. Так, например, это инерционность, обусловленная постоянной времени т, плохая стабильность в определенных условиях и т.д. Еще одна область применения терморезисторов - температурная компенсация электрических цепей в широком диапазоне температур. Такие электрические схемы популярны среди радиотехников и встречаются в усилителях мощности НЧ и многоплановых универсальных автоматических устройствах, предназначенных для применения в быту.

Для измерения температуры применяют металлические и полу­проводниковые резисторы. Большинство химически чистых металлов обладает положительным температурным коэффициентом сопротивления (ТКС), колеблющимся (в интервале 0-100° С) от 0,35 до 0,68 %/К.

Для измерения температур используются материалы, обладающие высокостабильной ТКС, линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. К таким материалам в первую очередь относится платина. Благодаря своей дешевизне широко распространены медные терморезисторы, применяются также вольфрамовые и никелевые.

Сопротивление платиновых терморезисторов в диапазоне температур от 0 до + 650° С выражается соотношением R Т =R 0 (1 +A Θ +B Θ 2 ), гдеR 0 - сопротивление при 0° С; Θ - температура в градусах Цельсия. Для платиновой проволоки, применяемой в промышленных термометрах сопротивления,A = 3,96847∙10 -12 1/К;В = - 5,847∙10 7 1/К 2 . В интервале от 0 до - 200° С зависимость сопротивления платины от температуры имеет видR т =R 0 , гдеС = - 4,22∙10 12 1/К 3 .

При расчете сопротивления медных проводников в диапазоне от - 50 до + 180° С можно пользоваться формулой R Т =R 0 (1 + aΘ), где a = 4,26∙10 3 1/К.

Если для медного терморезистора требуется определить сопротивление R T2 (при температуре Θ 2) по известному сопротивлению R T2 (при температуре Θ 1), то следует пользоваться формулой

или более удобным соотношением

где Θ = 1/a - постоянная, имеющая размерность температуры и равная Θ 0 = 234,7° С (по физическому смыслу Θ 0 - это такое значение температуры, при котором сопротивление меди должно было бы стать равным нулю, если бы ее сопротивление уменьшалось все время по линейному закону, чего нет на самом деле).

В значительной степени сопротивление металлов зависит от их химической чистоты и термообработки. ТКС сплавов обычно меньше, чем у чистых металлов, и для некоторых сплавов может быть даже отрицательным в определенном температурном диапазоне.

Выбор металла для терморезистора определяется в основном химической инертностью металла к измеряемой среде в интересующем интервале температур. С этой точки зрения медный преобразователь можно применять только до температур порядка 200° С в атмосфере, свободной от влажности и коррелирующих газов. При более высоких температурах медь окисляется. Нижний предел температуры для медных термометров сопротивления равен - 50° С хотя при введении индивидуальной градуировки возможно их применение вплоть до - 260° С.

Промышленные платиновые термометры используются в диапазоне температур от -200 до +650° С, однако есть данные, свидетельствующие о возможности применения платиновых термометров для измерения температур от -264 до +1000° С.

Основным преимуществом никеля является его относительно высокое удельное сопротивление, но зависимость его сопротивления от температуры линейна только для температур не выше 100° С. При условии хорошей изоляции от воздействия среды никелевые терморезисторы можно применять до 250-300° С. Для более высоких температур его ТКС неоднозначен. Медные и никелевые терморезисторы выпускают из литого микропровода в стеклянной изоляции. Микропроволочные терморезисторы герметизированы, вы-сокостабильны, малоинерционны и при малых габаритах могут иметь сопротивления до десятков килоом.

Высокий ТКС имеют вольфрам и тантал, но при температуре свыше 400° С они окисляются и применяться не могут. Для низкотемпературных измерений хорошо зарекомендовали себя некоторые фосфористые бронзы. Кроме того, для измерений низких температур находят применение индиевые, германиевые и угольные терморезисторы.

Некоторые характеристики металлов, используемых в терморезисторах, приведены в табл. 3.

Таблица 3:

Материал

ТКС в диапазоне 0-100°С

Удельное сопротивление при 20 °С, Оm∙mm 2 /m

Температура плавления, °С

Термо-э.д.с. в паре с медью (0-500 °С), мкВ/К

Вольфрам

Погрешности, возникающие при измерении температуры термометрами сопротивления, вызываются нестабильностью во времени начального сопротивления термометра и его ТКС, изменением сопротивления линии, соединяющей термометр с измерительным прибором, перегревом термометра измерительным током.

Термометры сопротивления относятся к одним из наиболее точных преобразователей температуры. Так, например, платиновые теоморезисторы позволяют измерять температуру с погрешностью порядка 0,001° С.

Полупроводниковые терморезисторы отличаются отметаллических меньшими габаритами и большими значениями ТКС.

ТКС полупроводниковых терморезисторов (ПТР) отрицателен и уменьшается обратно пропорционально квадрату абсолютной температуры: a = B /Θ 2 . При 20° С величина ТКС составляет 2-8 проц/К.

Температурная зависимость сопротивления ПТР (рис. 7 , кривая2) достаточно хорошо описывается формулой R T =Ae B /Θ , где Θ - абсолютная температура;А - коэффициент, имеющий размерность сопротивления;В - коэффициент, имеющий размерность температуры. На рис.рис. 7 для сравнения приведена температурная зависимость для медного терморезистора (кривая1 ). Для каждого конкретного ПТР коэффициентыА иВ, как правило, постоянны, за исключением некоторых типов 1 ПТР (например, СТ 3-14), для последнихВ может принимать два разных значения в зависимости от диапазона измеряемых температур.

Если для применяемого ПТР не известны коэффициенты А иВ, но известны сопротивленияR 1 иR 2 при Θ 1 и Θ 2 , то величину сопротивления и коэффициентВ для любой другой температуры можно определить из соотношений

"

Конструктивно терморезисторы могут быть изготовлены самой разнообразной формы. На рис. 8 показано устройство нескольких типов терморезисторов. Терморезисторы типа ММТ-1 и КМТ-1 представляют собой полупроводниковый стержень, покрытый эма­левой краской с контактными колпачками и выводами. Этот тип терморезисторов может быть использован лишь в сухих помещениях.,

Терморезисторы типов ММТ-4 и КМТ-4 заключены в металли­ческие капсулы и герметизированы, благодаря чему они могут быть использованы в условиях любой влажности и даже в жидкостях, ие являющихся агрессивными относительно корпуса терморезистора.

Особый интерес представляют миниатюрные полупроводниковые терморезисторы, позволяющие измерять температуру малых объектов с минимальными искажениями режима работы, а также температуру, изменяющуюся во времени. Терморезисторы СТ1-19 и СТЗ-19 имеют каплевидную форму. Чувствительный элемент в них герметизирован стеклом и снабжен выводами из проволоки, имеющей низкую теплопроводность. В терморезисторе СТЗ-25 чувствительный элемент также помещен в стеклянную оболочку, диаметр которой доведен до 0,5-0,3 мм. Терморезистор с помощью выводов прикреплен к траверсам.

Рис. 8

В табл. 4 представлены основные характеристики некоторых ПТР. В графе «номинальные сопротивления» приведены крайние значения рядов номинальных сопротивлений, нормируемых для большинства ПТР при 20° С. Исключение составляют ПТР типов

Таблица 4

Номинальное сопротивление, кОм

Постоянная В,

K∙ 10 12

Диапазон рабочих температур, o С

Коэффициент рассеяния, мВт/К

Постоянная времени (нe более), с

КМТ-1

.22-1000

От -60 до +180

ММТ-1

От -60 до +125

СТЗ-1

0,68-2,2

От -60 до +125

КМТ-4

От -60 до +125

ММТ-4

От -60 до +125

ММТ-6

От -60 до +125

СТЗ-6

От -90 до +125

КМТ-10

100-3300

КМТ-1 Оа

100-3300

КМТ-11

100-3300

34,7-36,3

36,3-41,2

От -60 до +125

СТ4-15

23,5-26,5

29,3-32,6

От -60 до +180

КМТ-17 (а, б)

От -60 до +155

КМТ-17в

От -60 до +100

СТ1-17

От -60 до +100

СТЗ-17

0,033-0,33

25,8-38,6

От -60 до +100

СТ4-17

От -80 до +100

КМТ-14

0,51-7500

От -10 до +300

СТЗ-14

От -60 до +125

СТ1-18

1,5-2200

От -60 до +300

СТЗ-18

0,68-3.3

22,5-32,5

От -90 до +125

СТ1-19

3,3-2200

От -60 до +300

СТЗ-19

29, 38, 5

От -90 до +125

СТЗ-25

От -100 до+125

КМТ-14, СТ1-18, СТ1-19, номинальные сопротивления которых нормируются для температуры 150° С. В графе «постоянная В» для некоторых типов ПТР приводятся два диапазона возможных значенийВ, первая строчка при этом относится к низким температурам, а вторая - к высоким. Перелом характеристики для ПТР типа СТЗ-6 происходит при - 28° С, для СТ4-2 и СТ4-15 - при 0° С и Для СТЗ-14- при 5° С.

Точность измерения температуры с помощью ПТР может быть весьма высокой. В настоящее время разработаны также ПТР для измерений низких и высоких температур. В частности, ПТР типа СТ7-1 может измерять температуру в диапазоне от - 110 до - 196° С. Высокотемпературный ПТР типа СТ12-1 предназначен для применения при температурах 600-1000° С.

Недостатками полупроводниковых терморезисторов, существенно снижающими их эксплуатационные качества, являются нелинейность зависимости сопротивления от температуры (см. рис. 14-12) и значительный разброс от образца к образцу как номинального значения сопротивления, так и постоянной В. Согласно ГОСТ 10688-63 допуск на величину номинального сопротивления может составлять ±20%. Допуск на величину постояннойВ не нормируется. Практически он достигает± 17% от номинального.

Нелинейность характеристики и технологический разброс параметров терморезисторов затрудняет получение линейных шкал термометров, построение многоканальных приборов, обеспечение взаимозаменяемости терморезисторов, необходимой при массовом производстве термометров с терморезисторами. Чтобы улучшить вид шкалы и обеспечить взаимозаменяемость терморезисторов, приходится применять специальные унифицирующие и линеаризующие цепи, как пассивные, так и активные.

Позисторы изготавливаются также из полупроводниковых материалов, но имеют положительный температурный коэффициент сопротивления. Для температурных зависимостей сопротивления позисторов характерно увеличение сопротивления при повышении температуры в определенном интервале температур. Ниже и выше этого интервала сопротивление с ростом температуры уменьшается. Положительные ТКС позисторов могут достигать величины порядка 30-50 проц/К, графики изменения их сопротивления в зависимости от температуры приведены нарис. 9 .

Возможно также создание других видов полупроводниковых Датчиков температуры. В частности, для измерения температуры Можно применять датчики из органических полупроводников и Датчики на основе открытых или запертыхр -n -переходов. Например, при заданном токе напряжение на открытомр - п- переходе или на стабилитроне линейно изменяется с температурой, чричем ТКС для открытогор -n -перехода отрицателен и составляет 2-3 мВ/К, а для стабилитрона положителен и достигает 8 мВ/К.

Измерительные цепи. Отличия измерительных цепей для терморезисторов от обычных цепей омметров заключаются в более узком диапазоне изменения измеряемого сопротивления и в необходимости учета сопротивлений проводов, соединяющих термометр сопротивления с измерительной цепью. Если используется простейшая двухпроводная соединительная линия, то может возникнуть погрешность от температурного изменения сопротивления этой линии. При применении высокоомных термометров (например, полупроводниковых) эта погрешность может быть пренебрежимо мала, однако в большинстве практических случаев, когда используются стандартные термометры сопротивления, ее приходится принимать во вни­мание.

Е
сли, например, сопротивление медной линии равно 5 Ом и используется термометр сRo = 53 Ом, то изменение температуры линии на 10° С приведет к изменению показаний прибора примерно на ГС. Для уменьшения погрешности от изменения сопротивления соедини­тельной линии часто применяют трехпроводную линию. При этом термометр подключают к мостовой цепи так, чтобы два провода линии вошли в разные плечи моста, а третий оказался подключен­ным последовательно с источником питания или указателем. На рис. 10, а показана схема моста, содержащего термометр сопротивления, присоединенный трехпроводной линией.

Исключить влияние сопротивлений соединительной линии можно, используя четырехпроводное включение терморезистора, как это показано на рис. 10 а , б , и вольтметр с большим входным сопротивлением для измерения падения напряженияU Θ = IR на терморезисторе. Ток через терморезистор должен быть задан, поэтому "и такой схеме включения терморезистор питают от стабилизатора тока. Возможно также построение мостовых цепей с четырехпроводным подключением термометра.

В первой части статьи было коротко рассказано об и их изобретателях Фаренгейте, Реомюре, Цельсии и Кельвине. Теперь стоит познакомиться с температурными датчиками, принципами их работы, приборами для получения данных от этих датчиков.

Доля измерения температуры в технологических измерениях

В современном промышленном производстве производится измерение множества различных физических величин. Из них массовый и объемный расход составляет 15%, уровень жидкостей 5%, время не более 4%, давление около 10% и так далее. А вот измерение температуры составляет почти 50% от общего количества технических измерений.

Такой высокий процент достигается числом точек измерения. Так на среднего размера атомной электростанции температура может измеряться примерно в 1500 точках, а на крупном химзаводе это количество достигает двадцати и более тысяч.

Такое количество говорит не только о широком разнообразии средств измерений и как следствие множестве первичных преобразователей и датчиков температуры, а также о постоянно возрастающих требованиях к точности, быстродействию, помехоустойчивости и надежности приборов измерения температуры.

Основные виды температурных датчиков, принцип работы

Практически все температурные датчики, применяемые в современном производстве, используют принцип преобразования измеряемой температуры в электрические сигналы. Такое преобразование основано на том, что электрический сигнал возможно передавать с высокой скоростью на большие расстояния, в электрические же сигналы могут быть преобразованы любые физические величины. Преобразованные в цифровой код эти сигналы могут быть переданы с высокой точностью, а кроме того введены для обработки в компьютер.

Термопреобразователи сопротивления

Их также еще называют терморезисторами . Принцип действия их основан на том, что все проводники и полупроводники имеют Температурный Коэффициент Сопротивления сокращенно ТКС . Это примерно то - же, что и известный всем коэффициент температурного расширения: при нагревании тела расширяются.

Следует заметить, что все металлы обладают положительным ТКС. Другими словами электрическое сопротивление проводника увеличивается при возрастании температуры. Здесь можно вспомнить тот факт, что лампы накаливания перегорают чаще всего в момент включения, пока спираль холодная и сопротивление ее невелико. Отсюда и повышенный ток при включении. Полупроводники имеют отрицательный ТКС, при увеличении температуры их сопротивление уменьшается, но об этом будет сказано чуть выше.

Металлические терморезисторы

Казалось бы, что в качестве материала для терморезисторов возможно использовать любой проводник, однако, ряд требований предъявляемых к терморезисторам, говорит что это не так.

Прежде всего, материал для изготовления температурных датчиков, должен обладать достаточно большим ТКС, а зависимость сопротивления от температуры должна быть достаточно линейной в широком диапазоне температур. Кроме того металлический проводник должен быть инертен к воздействию окружающей среды и обеспечивать хорошую воспроизводимость свойств, что позволит производить замену датчиков не прибегая к различным тонким настройкам измерительного прибора в целом.

По всем указанным свойствам почти идеально подходит платина (если не считать высокой цены), а также медь. Такие терморезисторы в описаниях называются медные (ТСМ-Cu) и платиновые (ТСП-Pt).

Терморезисторы ТСП могут использоваться в диапазоне температур -260 - 1100°C. Если измеряемая температура находится в пределах 0 - 650°C, то датчики ТСП могут использоваться в качестве эталонных и образцовых, поскольку нестабильность градуировочной характеристики в этом диапазоне не превышает 0,001°C. К недостаткам терморезисторов ТСП можно отнести высокую стоимость и нелинейность функции преобразования в широком диапазоне температур. Поэтому точное измерение температур возможно лишь в указанном в технических данных диапазоне.

Большее распространение на практике получили более дешевые медные терморезисторы марки ТСМ, зависимость сопротивления от температуры у которых достаточно линейна. Как недостаток медных резисторов можно считать низкое удельное сопротивление, и недостаточная устойчивость к воздействию высоких температур (легкая окисляемость). Поэтому медные терморезисторы имеют предел измерения не свыше 180°C.

Для подключения датчиков типа ТСМ и ТСП используется двухпроводная линия, если удаление датчика от прибора не превышает 200м. Если это расстояние больше, то используется трехпроводная линия связи, в которой третий провод используется для компенсации сопротивления подводящих проводов. Подобные способы подключения подробно показаны в технических описаниях приборов, которые комплектуются датчиками ТСМ или ТСП.

К недостаткам рассмотренных датчиков следует отнести их низкое быстродействие: тепловая инерционность (постоянная времени) таких датчиков находится в пределах от десятков секунд до нескольких минут. Правда, изготавливаются и малоинерционные терморезисторы, постоянная времени которых не более десятых долей секунды, что достигается за счет их малых габаритов. Такие терморезисторы изготавливают из литого микропровода в стеклянной оболочке. Они высокостабильны, герметизированы, и малоинерционны. Кроме того при малых габаритах имеют сопротивление до нескольких десятков килоОм.

Полупроводниковые терморезисторы

Их также часто называют термисторами . По сравнению с медными и платиновыми они имеют более высокую чувствительность и отрицательный ТКС. Это говорит о том, что при увеличении температуры их сопротивление уменьшается. ТКС термисторов на порядок выше, чем у их медных и платиновых собратьев. При весьма малых габаритах сопротивление термисторов может достигать до 1 МОм, что исключает влияние на результат измерения сопротивления соединительных проводов.

Для измерения температуры наибольшее распространение получили полупроводниковые терморезисторы марки КМТ (на основе окислов марганца и кобальта), а также ММТ (окислы марганца и меди). Функция преобразования термисторов достаточно линейна в диапазоне температур -100 - 200°C, надежность полупроводниковых терморезисторов очень высока, характеристики стабильны в течение долгого времени.

Единственным недостатком является то, что в серийном производстве не удается с достаточной точностью воспроизвести необходимые характеристики. Один экземпляр значительно отличается от другого, примерно так же, как транзисторы: вроде бы из одной упаковки, а коэффициент усиления у всех разный, двух одинаковых из сотни не найдешь. Такой разброс параметров приводит к тому, что при замене термистора приходится заново производить регулировку аппаратуры.

Для питания термопреобразователей сопротивления чаще всего используется мостовая схема, в которой уравновешивание моста производится при помощи потенциометра. При изменении сопротивления терморезистора от воздействия температуры уравновесить мост можно только поворотом потенциометра.

Подобная схема с ручной регулировкой применяется в качестве демонстрационной в учебных лабораториях. Движок потенциометра имеет шкалу, проградуированную непосредственно в единицах температуры. В реальных измерительных схемах все, конечно, производится автоматически.

В следующей части статьи будет рассказано о применении термопар и механических термометров расширения -

Терморезисторы относятся к категории полупроводниковых приборов и широко используются в электротехнике. Для их изготовления применяются специальные полупроводниковые материалы, имеющие значительный отрицательный температурный коэффициент. Если в целом рассматривать терморезисторы, принцип работы этих устройств заключается в том, что электрическое сопротивление данных проводников, полностью зависит от температуры. В данном случае, учитываются формы и размеры терморезистора, а также, физические свойства полупроводника. Отрицательный температурный коэффициент в несколько раз превышает такой же показатель для металлов.

Устройство и действие терморезисторов

Наиболее распространенные терморезисторы изготавливаются в виде полупроводникового стержня, покрытого эмалевой краской. К нему подводятся выводы и контактные колпачки, использующиеся только в сухой среде. Отдельные конструкции терморезисторов помещаются в герметичном металлическом корпусе. Они могут свободно применяться в помещениях с любой влажностью и легко переносят влияние агрессивной среды.

Герметичность конструкции обеспечивается с помощью стекла и олова. Стержни в таких терморезисторах оборачиваются металлической фольгой, а для токоотвода используется никелевая проволока. Номинальные значения терморезисторов находятся в диапазоне от 1 до 200 кОм, а их температурный диапазон находится в пределах от -100 до +129 градусов.

В работе терморезисторов применено свойство проводников, изменять в зависимости от температуры. Для этих приборов применяются металлы в чистом виде, чаще всего, платина и .

Использование терморезисторов

Многие конструкции терморезисторов применяются в приборах, контролирующих и регулирующих температуру. У них имеется источник тока, чувствительный элемент и измерительный уравновешенный мост. В уравновешенное состояние мост приводится путем перемещения движка реостата. В результате, реостатная величина находится в пропорции с измеряемым сопротивлением, которое полностью зависит от температуры.

Кроме уравновешенных измерительных мостов, применяется неуравновешенный вариант, у который обладает повышенной надежностью. Однако, у такого прибора, точность измерений значительно ниже, поскольку на него влияют колебания напряжения в источнике тока. Например, термометр сопротивления на основе платины, позволяет измерять температуру в пределах от -10 до +120 градусов. Относительная влажность может доходить до 98%.

Принцип действия такого прибора основан на изменении сопротивления платины в зависимости от изменений температуры. Непосредственная фиксация результатов измерения сопротивления осуществляется с помощью вторичного прибора, оборудованного шкалой.

Термистор (терморезистор) – твердотельный электронный элемент, внешне напоминающий постоянный резистор, но обладающий выраженной температурной характеристикой. Этот вид электронных приборов, как правило, используются для изменения аналогового выходного напряжения с учётом изменения окружающей температуры. Другими словами – электрические свойства термистора и принцип действия напрямую связаны с физическим явлением — температурой.

Термистор — термочувствительный полупроводниковый элемент, изготовленный на основе полупроводниковых оксидов металлов. Обычно имеет форму диска или шара с металлизированными или соединительными выводами.

Такие формы позволяют изменять резистивное значение пропорционально малым изменениям температуры. Для стандартных резисторов изменение сопротивления от нагрева видится нежелательным явлением.

Но этот же эффект видится удачным при построении многих электронных схем, требующих определения температуры.

Таким образом, будучи нелинейным электронным устройством с переменным сопротивлением, терморезистор успешно подходит для работы в качестве терморезистора-датчика. Такого рода датчики широко применяют для контроля температуры жидкостей и газов.

Выступая твердотельным устройством, изготовленным на основе высокочувствительных оксидов металлов, терморезистор работает на молекулярном уровне.

Валентные электроны становятся активными и воспроизводят отрицательный ТКС либо пассивными и тогда воспроизводят положительный ТКС.

В результате электронные приборы – термисторы, демонстрируют очень хорошую воспроизводимую резистивность, сохраняя эксплуатационные характеристики, позволяющие продуктивно работать в диапазоне температур до 200ºC.

Применение терморезисторов на практике

Базовым направлением применения, в данном случае, являются резистивные температурные датчики. Однако эти же электронные элементы, принадлежащие семейству резисторов, можно успешно использовать включенными последовательно с другими компонентами или устройствами.

Простые схемы включения терморезисторов, показывающие работу приборов в качестве температурных датчиков — своеобразных преобразователей напряжения за счёт изменения сопротивления

Такая схема включения позволяет контролировать ток, протекающий через компонент. Таким образом, термисторы, по сути, выступают ещё и токоограничителями.

Производятся термисторы разного типа, на основе различных материалов и отличаются по размерам в зависимости от времени отклика и рабочей температуры.

Существуют герметичные модификации приборов, защищённые от проникновения влаги. Есть конструкции под высокие рабочие температуры и компактные по размерам.

Следует выделить три наиболее распространенных типа терморезисторов:

  • шариковые,
  • дисковые,
  • инкапсулированные.

Работают приборы в зависимости от изменения температуры:

  1. На уменьшение резистивного значения.
  2. На увеличение резистивного значения.

То есть существует два типа приборов:

  1. Обладающие отрицательным ТКС (NTC).
  2. Обладающие положительным ТКС (PTC).

Отрицательный коэффициент ТКС

NTC-термисторы с отрицательным ТКС уменьшают собственное резистивное значение по мере увеличения внешней температуры. Как правило, именно эти приборы чаще выступают датчиками температуры, поскольку идеально подходят практически к любому типу электроники, где требуется контроль температуры.

Относительно большой отрицательный отклик термистора NTC означает, что даже небольшие изменения температуры способны значительно изменить электрическое сопротивление прибора. Этот фактор делает модели NTC идеальными датчиками точного измерения температур.


Схема калибровки (проверки) терморезистора: 1 — источник питания; 2 — направление тока; 3 — испытуемый электронный элемент термистор; 4 — калибровочный микроамперметр

Терморезисторы NTC, снижающие сопротивление с повышением температуры, по исполнению доступны с различными базовыми сопротивлениями. Как правило, базовым сопротивлениям при комнатной температуре.

Например: 25ºC берётся за контрольную (базовую) температурную точку. Отсюда выстраиваются значения приборов, допустим, следующих номиналов:

  • 2,7 кОм (25ºC),
  • 10 кОм (25ºC)
  • 47 кОм (25ºC)….

Другой важной характеристикой является значение «В». Величина «В» представляет собой постоянную константу, которая определяется керамическим материалом, из которого изготовлен термистор.

Этой же константой определяется градиент кривой резистивного отношения (R/T) в определенном температурном диапазоне между двумя температурными точками.

Каждый материал термистора имеет различную материальную константу и, следовательно, индивидуальную кривую отношения сопротивления и температуры.

Так, константа «B» определяет одно резистивное значение при базовой T1 (25ºС), и другое значение при Т2 (например, при 100ºC).

Следовательно, значение B определит постоянную константу материала термистора, ограниченную диапазоном T1 и T2:

B * T1 / T2 (B* 25 / 100)

p.s. значения температуры в расчётах берутся в градуировке Кельвина.

Отсюда вытекает, что имея значение «В» (из характеристики производителя) конкретного прибора, электронщику останется только создать таблицу температур и сопротивлений, чтобы построить подходящий график при помощи следующего нормированного уравнения:

B (T1/T2) = (T 2 * T 1 / T 2 – T 1) * ln(R1/R2)

где: T 1 , T 2 – температуры в градусах Кельвина; R 1 , R 2 – сопротивления при соответствующих температурах в Омах.

Так, например, термистор NTK, обладающий сопротивлением 10 кОм, имеет значение «В» равным 3455 в рамках температурного диапазона 25 — 100ºC.

Очевидный момент: термисторы экспоненциально меняют сопротивление с изменениями температуры, поэтому характеристическая нелинейная. Чем больше контрольных точек устанавливаются, тем точнее получается кривая.

Применение термистора в роли активного датчика

Поскольку прибор является активным типом датчика, для работы требуется сигнал возбуждения. Любые изменения сопротивления в результате изменения температуры преобразуются в изменение напряжения.


Промышленностью выпускаются термисторы разного исполнения, в том числе высокоточные, надёжно защищённые для применения в системах высокого уровня

Самый простой способ добиться подобного эффекта — использовать термистор как часть схемы делителя потенциала, как показано на рисунке ниже. Постоянное напряжение подаётся в цепь резистора и терморезистора.

К примеру, используется схема, где термистор 10 кОм включен последовательно с резистором 10 кОм. В этом случае выходное напряжение при базовой Т = 25ºC составит половину напряжения питания.

Таким образом, схема делителя потенциалов является примером простого преобразователя сопротивления в напряжение. Здесь сопротивление термистора регулируется температурой с последующим формирования величины выходного напряжения, пропорциональной температуре.

Простыми словами: чем теплее корпус термистора, тем ниже напряжение на выходе.

Между тем, если изменить положение последовательного резистора, R S и термистора R TH , в этом случае уровень выходного напряжения изменится на противоположный вектор. То есть теперь чем больше нагреется термистор, тем выше будет уровень выходного напряжения.

Использовать термисторы допускается и как часть базовой конфигурации с использованием мостовой схемы. Связью между резисторами R1 и R2 устанавливается опорное напряжение до требуемого значения. Например, если R1 и R2 имеют одинаковые значения сопротивления, опорное напряжение равно половине напряжения питания (V/2).

Схема усилителя, построенная с использованием этой мостовой схемы с термозондом, может выступать в качестве высокочувствительного дифференциального усилителя или в качестве простой схемы запуска Шмитта с функцией переключения.


Включение терморезистора в мостовую схему: R1, R2, R3 -обычные постоянные резисторы; Rт — термистор; А — измерительный прибор микроамперметр

Существует проблема, связанная с термистор (эффект «самонагрева»). В таких случаях рассеиваемая мощность I 2 R достаточно высока и создаёт больше тепла, чем способен рассеять корпус прибора. Соответственно, это «лишнее» тепло влияет на резистивное значение, что приводит к ложным показаниям.

Одним из способов избавления от эффекта «самонагрева» и получения более точного изменения сопротивления от влияния температуры (R/T), видится питание термистора от постоянного источника тока.

Термистор как регулятор пускового тока

Приборы традиционно используются в качестве резистивных чувствительных к температуре преобразователей. Однако сопротивление термистора изменяется не только под влиянием окружающей среды, но также изменения наблюдаются от протекающего через прибор электротока. Эффект того самого «самонагрева».

Разное электрооборудование на индуктивной составляющей:

  • двигатели,
  • трансформаторы,
  • электролампы,
  • другое,

подвергается чрезмерным пусковым токам при первом включении. Но если в цепь последовательно включить термистор, можно эффективно ограничивать высокий начальный ток. Такое решение способствует увеличению срока службы электрооборудования.

Терморезисторы с низким ТКС (при 25°C) обычно используются для регулирования пускового тока. Так называемые ограничители тока (перенапряжения) меняют сопротивление до очень низкого значения при прохождении тока нагрузки.

В момент первоначального включения оборудования пусковой ток проходит через холодный термистор, резистивное значение которого достаточно велико. Под воздействием тока нагрузки термистор нагревается, сопротивление медленно уменьшается. Так осуществляется плавная регулировка тока в нагрузке.

Термисторы NTC достаточно эффективно обеспечивают защиту от нежелательно высоких пусковых токов. Преимущественной стороной здесь является то, что этот тип приборов способен эффективно обрабатывать более высокие пусковые токи по сравнению с резисторами стандартного образца.

Просмотров