Импульсный источник питания для усилителей. Импульсный блок питания для унч Резистор в схеме двуполярного блока питания умзч

После успешного , переходим к самой интересной части конструкции - блок усилителей мощности звука. В том числе фильтр низких частот для сабвуфера и модуль стабилизации. Напоминаем, что все схемы и чертежи плат - .

Ну что сказать про один из самых повторяемых схем усилителя мощности, - схема Ланзар была разработана еще в 70-х годах прошлого столетия. На современной высокоточной элементарной базе, ланзар стал звучать еще лучше. По идее, схема отлично подходит и для широкополосной акустики, искажения при половине громкости всего 0,04% - полноценный Hi-Fi .

Выходной каскад усилителя построен на паре 2SA1943 и 2SC5200 , все каскады собраны на максимально близких по параметрам комплиментарных парах, усилитель построен полностью по симметричной основе. Номинальная выходная мощность усилителя составляет 230-280 ватт, но можно снять гораздо больше, повышая входное напряжение питания.

Номиналы ограничительных резисторов дифференциальных каскадов подбирается исходя от входного напряжения. Ниже приведена таблица.

Питание ±70 В - 3,3 кОм...3,9 кОм
Питание ±60 В - 2,7 кОм...3,3 кОм
Питание ±50 В - 2,2 кОм...2,7 кОм
Питание ±40 В - 1,5 кОм...2,2 кОм
Питание ±30 В - 1,0 кОм...1,5 кОм

Эти резисторы подбираются с мощностью 1-2 ватт, в ходе работы на них может наблюдаться тепловыделение.

Регулирующий транзистор заменил на отечественный КТ815 , на тот момент другого не было под рукой. Он предназначен для регулировки тока покоя выходных каскадов, в ходе работы не перегревается, но укреплен на общий теплоотвод с транзисторами выходного каскада.

Первый запуск схемы желательно сделать от сетевого блока питания, последовательно сетевой обмотке трансформатора подключите накальную лампу на 100-150 ватт, если будут проблемы, то спалите минимум деталей. А вообще, схема Ланзара не критична к монтажу и компонентам, я пробовал даже с широким разбросом используемых компонентов, с использованием отечественных радиодеталей - схема показывает высокие параметры даже в этом случая. Принципиальная схема Ланзара имеет две основные версии - на биполярных транзисторах и с применением полевых ключей в предпоследнем каскаде, в моем случае первая версия .

Второй предвыходной каскад работает в чистом классе "А ", поэтому в ходе работы транзисторы перегреваются. Транзисторы этого каскада обязательно устанавливают на теплоотвод, желательно общий, не забудьте про изоляции - слюдяные пластины и изолирующие шайбы для шурупов.


Правильно собранная схема заводится без всяких проблем. Первый запуск делаем с ЗАКОРОЧЕННЫМ НА ЗЕМЛЮ ВХОДОМ , т.е. вход усилителя стыкуем с средней точкой с блока питания. Если после запуска ничего не взорвалось, то можно отсоединять вход от земли. Дальше подключаем нагрузку - динамик и включаем усилитель. Для того, чтобы убедиться в работоспособности усилителя, достаточно дотронуться до оголенного входного провода. Если в головке появляется своеобразный рев - то усилитель работает! Дальше можно укрепить все силовые части на теплоотводы и подать на вход усилителя звуковой сигнал. После 15-20 минут работы на 30-50% от максимальной громкости нужно настроить ток покоя. На фотографии все детально показано, в качестве индикатора напряжение желательно использовать цифровой мультиметр.


Замер выходной мощности усилителя


Как выставить ток покоя

Фильтр низкой частоты и сумматора построен на двух микросхемах. Он предназначен для плавной регулировки фазы, громкости и частоты. Сумматор предназначен для суммирования сигналов обеих каналов, для получения более мощного сигнала. В промышленных автоусилителях высокой мощности используется именно такой принцип фильтрации и суммирования сигнала, но сумматор можно при желании исключить из схемы и обойтись только фильтром низких частот. Фильтр срезает все частоты, оставляя только предел в пределах 35-150 Гц.


Регулировка фазы позволяет согласовать сабвуфер с акустическими системами, в некоторых случаях её тоже исключают.


Этот блок питается от стабилизированного источника двухполярного напряжения +/-15 Вольт. Питание можно организовать с помощью дополнительной вторичной обмотки или же использовать двухполярный стабилизатор напряжения для понижения напряжения от основной обмотки.

Для этого собран двухполярный стабилизатор. Первоначально напряжение снижается диодами зенера, затем усиливается биполярными транзисторами и подается на линейные стабилизаторы напряжения типа 7815 и 7915 . На выходе стабилизатора образуется стабильное двухполярное питание, которым и питается блок сумматора и ФНЧ.


Стабилизаторы и транзисторы могут греться, но это вполне нормально, при желании их можно укрепить на теплоотводы, но в моем случае имеется активное охлаждение кулером, поэтому теплоотводы не пригодились, к тому же тепловыделение в пределах нормы, поскольку сам блок ФНЧ потребляет очень мало.


ОПЛЕУХА МИКРОСХЕМАМ

Оплеуха микрухам - не самый простой, но высококачественный усилитель мощности НЧ. Усилитель способен развивать максимальную выходную мощность в 130 ватт и работает в довольно широком диапазоне входного напряжения. Выходной каскад усилителя построен на паре 2sa1943 2sc5200 и работает в режиме АВ . Эта версия, автором была разработана в этом году, ниже ее основные параметры.

Диапазон питающих напряжений = +/- 20В... +/- 60В

Номинальное напряжение питания (100Вт, 4 Ом) = +/- 36В

Номинальное напряжение питания (100Вт, 8 Ом) = +/- 48В


С мощностью все понятно, а что со стороны искажений?

THD+N (при Pвых<=60Вт, 20кГц) <= 0,0009%

THD+N (при максимальной выходной мощности, 1кГц) = 0,003%

THD+N (при максимальной выходной мощности, 20кГц) = 0,008%

Детали, используемые в этом модуле - подстроечные резисторы, маломощные и среднемощные транзисторы:

ТУТ ВИДЕО

Совсем не дурно, почти hi-end ! На самом деле если ориентироваться только по КНИ, то этот усилитель полноценный HI-END , но для хай-энда этого не достаточно, поэтому его отнесли к старому и доброму разряду hi-fi.

Несмотря на то, что усилитель развивает всего 100 ватт , он на порядок сложнее аналогичных схем, но сама сборка не составит труда при наличии всех компонентов. Отклонять номиналы схемы не советую - мой опыт это подтверждает.


Маломощные транзисторы в ходе работы могут перегреваться, но волноваться не стоит - это их нормальный режим работы. Выходной каскад, как уже сказал, работает в классе АВ, следовательно, выделятся огромное количество тепла, которое нужно отводить. В моем случае они укреплены на общий теплоотвод, которого более, чем достаточно, но на всякий случай, имеется также и активное охлаждение.


После сборки нас ждет первый запуск схемы. Для этого советую еще раз прочитать запуск и настройку Ланзара - тут все делается точно таким же образом. Первый запуск делаем с закороченной на землю входом, если все ОК, то размыкаем вход и подаем звуковой сигнал. К тому времени все силовые компоненты должны быть укреплены на теплоотвод, а то восхищаясь музыкой можете не заметить, как дымят ключи выходного каскада - каждый из них стоит очень и очень. А про блок защиты в узнаете . С уважением - АКА КАСЬЯН .

Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ - БЛОК УМЗЧ

кликните по картинке чтобы увеличить

Управляющим контроллером в данном блоке питания служит TL494. После контроллера стоит полумостовой драйвер IR2110, который собственно и управляет затворами силовых транзисторов. Использование драйвера позволило отказаться от согласующего трансформатора, широко используемого в компьютерных блоках питания. Драйвер IR2110 нагружен на затворы через ускоряющие закрытие полевиков цепочки R24-VD4 и R25-VD5.
Силовые ключи VT2 и VT3 работают на первичную обмотку силового трансформатора. Средняя точка, необходимая для получения переменного напряжения в первичной обмотке трансформатора формируется элементами R30-C26 и R31-C27.
Последовательно с первичной обмоткой силового трансформатора включен трансформатор тока TV1, позволяющий контролировать протекающий через силовые ключи ток и строить на этом токовую защиту. Кроме этого используя выходное напряжение с трансформатора тока можно управлять оборотами вентилятора принудительного охлаждения (VT4).
Стабилизация силовых напряжений производится при помощи дросселя групповой стабилизации L1.
Емкость фильтров первичного питания рассчитывается из отношения 1 мкФ на 1 Вт выходной мощности, а силовые транзистора должны иметь максимальный ток минимум на 30% больше чем ток, протекающий через первичную обмотку силового трансформатора при максимальной мощности.
Несколько слов об алгоритме работы данного блока питания:
В момент подачи сетевого напряжения 220 В емкости фильтров первичного питания С15 и С16 заражаются через резисторы R8 и R11, что не позволяет перегрузиться мосту VD током короткого замыкания полностью разряженных С15 и С16. Одновременно происходит зарядка конденсаторов С1, С3, С6, С19 через линейку резисторов R16, R18, R20 и R22, стабилизатор 7815 и резистор R21.
Как только величина напряжения на конденсаторе С6 достигнет 12 В стабилитрон VD1 "пробивается" и через него начинает течь ток заряжая конденсатор C18 и как только на плюсовом выводе этого конденсатора будет достигнута величина достаточная для открытия тиристора VS2 он откроется. Это повлечет включение реле К1, которое своими контактами зашунтирует токоограничивающие резисторы R8 и R11. Кроме этого открывшийся тиристор VS2 откроет транзистор VT1 и на контроллер TL494 и полумостовой драйвер IR2110. Контроллер начнет режим мягкого старта, длительность которого зависит от номиналов R7 и C13.
Во время мягкого старта длительность импульсов, открывающих силовые транзисторы, увеличиваются постепенно, тем самым постепенно заряжая конденсаторы вторичного питания и ограничивая ток через выпрямительные диоды. Стабилизация выходного напряжения происходит путем изменения длительности импульсов управления силовыми транзисторами при неизменной частоте. Это возможно лишь при условии, когда величина вторичного напряжения силового трансформатора выше требуемой на выходе стабилизатора минимум на 30%, но не более 60%. При увеличении нагрузки выходное напряжение начинает уменьшаться, светодиод оптрона начинает светиться меньше, транзисторы оптрона закрывается, тем самым увеличивая длительность импульсов управления до тех пор, пока действующее напряжение не достигнет величины стабилизации. При уменьшении нагрузки напряжение начнет увеличиваться, светодиод оптрона IC1 начнет светиться ярче, тем самым открывая транзистор и уменьшая длительность управляющих импульсов до тех пор, пока величина действующего значения выходного напряжения не уменьшиться до стабилизируемой величины. Величину стабилизируемого напряжения регулируют подстроечным резистором R26.
Следует отметить, что контроллером TL494 регулируется не длительность каждого импульса в зависимости от выходного напряжения, а лишь среднее значение, т.е. измерительная часть имеет некоторую инерционность. Однако даже при установленных конденсаторах во вторичном питании емкостью 2200 мкФ провалы питания при пиковых кратковременных нагрузках не превышают 5 %, что вполне приемлемо для аппаратуры HI-FI класса. Мы же обычно ставим конденсаторы во вторичном питании 4700 мкФ, что дает уверенный запас на пиковые значения, а использование дросселя групповой стабилизации L1 позволяет контролировать все выходные напряжения.
Данный импульсный блок питания оснащен защитой от перегрузки, измерительным элементом которой служит трансформатор тока TV1. Как только ток достигнет критической величины, открывается тиристор VS1 и зашунтирует питание оконечного каскада контроллера. Импульсы управления исчезают, и блок питания переходит в дежурный режим, в котором может находиться довольно долго, поскольку тиристор VS2 продолжает оставаться открытым - тока протекающего через резисторы R16, R18, R20 и R22 хватает для удержания его в открытом состоянии.
Для вывода блока питания из дежурного режима необходимо нажать кнопку SA3, которая своим контактами зашунтирует тиристор VS2, ток через него перестанет течь и он закроется. Как только контакты SA3 разомкнуться транзистор VT1 закроется, тем самым снимая питание с контроллера и драйвера. Таким образом схема управления перейдет в режим минимального потребления - тиристор VS2 закрыт, следовательно реле К1 выключено, транзистор VT1 закрыт, следовательно контроллер и драйвер обесточены. Конденсаторы С1, С3, С6 и С19 начинают заряжаться и как только напряжение достигнет 12 В откроется тиристор VS2 и произойдет запуск импульсного блока питания.
При необходимости перевести блок питания в дежурный режим можно воспользоваться кнопкой SA2, при нажатии на которую будут соединены база и эмиттер транзистора VT1. Транзистор закроется и обесточит контроллер и драйвер. Импульсы управления исчезнут, исчезнут и вторичные напряжения. Однако питание не будет снято с реле К1 и повторного запуска преобразователя не произойдет.
Немного о деталях:
Силовой трансформатор мы изготавливаем на сердечниках от строчных трансформаторов телевизоров. Однако схожие параметры можно получить и на ферритовых кольцах, правда частоту преобразования не стоит поднимать выше 70 кГц, поскольку даже уже на этой частоте феррит 2000 начинает греться из за внутренних потерь. В качестве дросселя групповой стабилизации мы используем сердечник от ТПИ. Обмотки располагаются встречно, как показано на принципиальной схеме. Сечение проводников рассчитывается из отношения 3-4 А на мм кв. Обмотки наматываются до заполнения окна. В случае использования в качестве сердечника для дросселя групповой стабилизации ферритового кольца лучше использовать кольцо К40х25х11. Обмотки мотаются до уменьшения отверстия внутри до 14...16 мм. В качестве дополнительных фильтрующих индуктивностей мы используем сердечники от фильтров сетевого питания телевизоров, но эти фильтры можно намотать и на кольцах диаметром 20...25 мм. Обмотка мотается до заполнения, тем же проводом, что и дроссель групповой стабилизации.
Для регулировки в качестве нагрузки следует все силовые напряжения нагрузить резисторами мощностью 2 Вт и сопротивлением 4,7к...6,8к. При выходном напряжении 60...90 В это будет имитировать ток покоя усилителей мощности. При более низком выходном напряжении сопротивление следует немного уменьшить.

Всем доброго времени. Позвольте представить силовой инвертор для питания мощного аудиоусилителя. К сожалению, особенно хорошо повторяемых. Поэтому решено было сделать такой источник питания с нуля. Потребовалось немало времени, чтобы проектировать, построить и протестировать этот ИБП. И вот, проведя последние испытания (все тесты прошли успешно) можно сказать что проект закончен и его можно выставить на суд уважаемой радиолюбительской аудитории сайта 2 Схемы.ру

Проект этого инвертора отлично подходит для , собственно для него он и разрабатывался. Преобразователь не сложен и должен быть успешно собран не слишком продвинутыми электронщиками. Для запуска не требуется даже осциллограф, но конечно это было бы полезно. Основа схемы источника питания — м/с TL494.

Он имеет защиту от короткого замыкания и должен обеспечить непрерывную мощность 250 Вт. Преобразователь также имеет дополнительное выходное напряжение +/- 9..12 В, которое будет использоваться для питания предусилителя, вентиляторов и т.д.

Импульсный БП для усилителя — схема

Преобразователь выполнен в соответствии с этой схемой. Размеры платы 150×100 мм.

Инвертор состоит из нескольких базовых модулей, присутствующих в большинстве похожих БП, таких как блок питания ATX. Предохранитель, термистор и сетевой фильтр, состоящий из C21, R21 и L5, идут к источнику питания переменного тока 220 В. Затем выпрямительный мост D26-D29, входные конденсаторы инвертора C18 и C19 и силовые транзисторы Q8 и Q9 для переключения напряжения на трансформаторе. Силовые транзисторы управляются с помощью дополнительного трансформатора T2 одним из самых популярных ШИМ-контроллеров — TL494 (KA7500). Трансформатор тока Т3 для измерения выходной мощности последовательно соединен с первичной обмоткой. Трансформатор T1 имеет две разделенные вторичные обмотки. Одна из них формирует напряжение 2×35 В, а другая 2×12 В. На каждой из обмоток есть фаст диоды D14-D17 и D22-D25, которые в общей сложности образуют 2 выпрямительных моста.

После нагрузки линии +/- 34 В резистором 14 Ом, напряжение падает до +/- 31 В. Это довольно хороший результат для такого небольшого ферритового сердечника. Через 5 минут диоды D22-D25, основной трансформатор и MOSFET нагревались до температуры порядка 50C, что вполне безопасно. После подключения двух каналов TDA7294 напряжение упало до +/- 30 В. Инверторные элементы нагревались подобно резистивной нагрузке. После экспериментов выходная цепь оснащена конденсаторами 2200uF и дросселями 22uH / 14A. Падение напряжения немного выше, чем в случае с 6.8uH, однако их использование явно уменьшает нагрев МОП-транзисторов.

Выходное напряжение под нагрузкой обоих выходов с лампочками мощностью 20 Вт:

Принцип работы импульсного блока питания

Напряжение 220 В выпрямляется мостом с диодами D26-D29. Входные конденсаторы C18 и C19 заряжаются до общего напряжения 320 В, а поскольку инвертор работает в полумостовой системе, они делят их на половину, что дает 160 В на конденсатор. Это напряжение дополнительно уравновешивается резисторами R16 и R17. Благодаря этому разделению можно подключить трансформатор Т1 к одному каналу. Тогда потенциал между конденсаторами обрабатывается как масса, один конец первичной обмотки подключен к +160 В, другой к -160 В. Напряжение переключения первичной обмотки трансформатора Т1 осуществляется с помощью переменного транзистора N-MOSFET Q8 и Q9.

Конденсатор C10 и первичная обмотка трансформатора тока T3 расположены последовательно с первичной обмоткой. Конденсатор связи не нужен для функционирования схемы, но он играет очень важную роль — защищает от несбалансированного потребления энергии от входных конденсаторов и, следовательно, перед зарядкой одного из них до более чем 200 В. Трансформатор тока Т3, также расположенный последовательно с первичной обмоткой, действует как защита от короткого замыкания. Трансформатор тока обеспечивает гальваническую развязку и позволяет измерять величину тока, уменьшенную до точности ее передачи. Его задача — информировать контроллер о величине тока, протекающего через первичную обмотку T1.

Параллельно с первичной обмоткой основного трансформатора имеется так называемая схема гашения импульсов, которую образуют C13 и R18. Она подавляет всплески напряжения, возбуждаемые при переключении силовых транзисторов. Они не опасны для МОП-транзисторов, поскольку их встроенные диоды эффективно защищают от перенапряжения на стоках. Однако всплески напряжения могут отрицательно влиять на эффективность инвертора, поэтому важно их устранить.

Силовые МОП-транзисторы не могут управляться напрямую от контроллера из-за изменения потенциала верхнего транзисторного источника. Транзисторы управляются с помощью специального трансформатора Т2. Это обычный импульсный трансформатор, работающий в двухтактном режиме, открывающий силовые транзисторы. Управляющий трансформатор Т2 имеет на входе набор элементов управления напряжением на обмотках, которые помимо генерирования напряжения, продиктованного контроллером, защищают от возникновения размагничивающего напряжения сердечника. Неконтролируемое напряжение размагничивания удерживало бы транзистор открытым. Элементами, непосредственно ответственными за устранение напряжения размагничивания, являются диоды D7 и D9, а также транзисторы Q3 и Q5. Во время простоя, когда оба МОП-транзистора закрыты, ток протекает через D7 и Q5 (или D9 и Q3) и поддерживает напряжение размагничивания около 1,4 В. Это напряжение безопасно и не может открыть силовой транзистор.

Осциллограмма напряжения на входах MOSFET:

На осциллограмме можно четко видеть момент, когда сердечник ​​перестает размагничиваться диодами D7 и D8 (D6 и D9) и начинает намагничиваться в противоположном направлении транзисторами Q3 и Q4 (Q2 и Q5). В фазе размагничивания сердечника напряжение на затворе Т2 достигает 18 В, а на фазе намагничивания оно падает примерно до 14 В.
Почему не использован один из драйверов типа IR? Прежде всего управляющий трансформатор более надежный, более предсказуемый. IR-драйверы очень капризны и подвержены ошибкам.

На вторичной обмотке основного трансформатора Т1 генерируется переменное напряжение, поэтому необходимо его выпрямить. Роль выпрямителя играют выпрямительные фаст диоды, генерирующие симметричное напряжение. Выходные дроссели расположены за диодами — их присутствие влияет на эффективность инвертора, подавляя всплески заряжающие выходные конденсаторы при включении одного из силовых транзисторов. Далее выходные конденсаторы с резисторами предварительной нагрузки, которые препятствуют подъёма напряжения до слишком высоких значений.

Контроллер импульсного ИП

Контроллер является основой инвертора, поэтому опишем его более подробно. В инверторе использован контроллер TL494 с установленной частотой работы такой же, как и в блоках питания ATX, то есть 30 кГц. Инвертор не имеет стабилизации выходного напряжения, поэтому контроллер работает с максимальным коэффициентом заполнения импульсов, который составляет 85%. Контроллер оснащен системой плавного пуска, состоящей из элементов C5 и R7. После запуска инвертора схема обеспечивает плавное увеличение коэффициента заполнения начиная с 0%, что устраняет всплеск зарядки выходных конденсаторов. TL494 может работать от 7 В, и такое напряжение, подающее буфер управляющего трансформатора Т2, вызывает генерацию напряжения на затворах порядка 3 В. Такие не полностью открытые транзисторы выдадут десятки вольт, что приведет к огромным потерям мощности и существует высокая вероятность превышения опасного предела. Чтобы предотвратить это, сделана защита от слишком высокого падения напряжения. Она состоит из резисторного делителя R4 — R5 и транзистора Q1. После того как напряжение падает до 14,1 В, Q1 разряжает конденсатор плавного пуска, тем самым уменьшая заполнение до 0%.

Другая функция контроллера — защитить инвертор от короткого замыкания. Информация о токе первичной обмотки получается контроллером через трансформатор тока Т3. Ток вторичной обмотки Т3 протекает через резистор R9, на котором падает небольшое напряжение. Информация о напряжении на R9 через потенциометр PR1 поступает на усилитель ошибки TL494 и сравнивается с напряжением резисторного делителя R1 и R2. Если контроллер распознает напряжение выше 1,6 В на потенциометре PR1, он закрывает транзисторы до того, как они пересекут опасный предел и фиксируется через D1 и R3. Силовые транзисторы остаются закрытыми до тех пор, пока инвертор не будет перезапущен. К сожалению, эта защита работает правильно только на линии +/- 35 В. Линия +/- 12 В намного слабее и в случае короткого замыкания может быть недостаточно тока, чтоб защита сработала.

Источник питания контроллера — безтрансформаторный с использованием сопротивления конденсатора. Два конденсатора C20 и C24 потребляют реактивную энергию от сети, и, следовательно, заставляя ток течь, они заряжают фильтрующий конденсатор C1 через выпрямитель D10-D13. Стабилитрон DZ1 защищает от слишком высокого напряжения на C1 и стабилизирует их при 18 В.

Импульсные трансформаторы в БП

Качество и производительность импульсного трансформатора влияют эффективность всего преобразователя и выходное напряжение. Однако трансформатор выполняет функцию не только преобразования электричества, но также обеспечивает гальваническую изоляцию от сети 220 В и, таким образом, оказывает большое влияние на безопасность.

Вот как правильно сделать такой трансформатор. Прежде всего должен быть ферритовый сердечник. Он не может иметь воздушный зазор, его половинки должны отлично соединяться друг с другом. Теоретически здесь можно использовать тороидальный сердечник, но сделать хорошую изоляцию и обмотку будет довольно нелегко.

Рекомендуем брать основной ETD34, ETD29 в крайнем случае, но тогда максимальная непрерывная мощность будет составлять не более 180 Вт. Они стоят немного, поэтому лучшим решением будет получить поврежденный блок питания ATX. На сгоревших источниках питания от ПК в дополнение ко всем необходимым трансформаторам содержится ещё много полезных элементов, в том числе сетевой фильтр, конденсаторы, диоды, а иногда и TL494 (KA7500).

Трансформаторы должны быть осторожно выпаяны с платы блока питания ATX, предпочтительно с помощью термофена. После распайки не пытайтесь разобрать трансформатор, потому что он ​​сломается. Трансформатор следует класть в воду и кипятить. После 5 минут нужно осторожно захватив половинки сердечника через ткань, разделить. Если они не хотят расходиться, не тяните сильно — сломаете! Положить обратно и варите еще 5 минут.

Процесс намотки основного трансформатора должен начинаться с подсчета количества провода, который будет намотан. Из-за постоянной рабочей частоты и заданной максимальной индукции, количество обмоток первички зависит только от площади поперечного сечения основного столба ферритового сердечника. Максимальная индукция ограничена 250 мТ из-за работы в полумостовом режиме — здесь асимметрия намагниченности проста.

Формула для вычисления числа витков:

n = 53 / Qr,

  • Qr — площадь поперечного сечения основного стержня сердечника, приведенного в см2.

Таким образом, для сердечника с поперечным сечением 0,5 см2 необходимо наматывать 106 витков, а для сердечника с поперечным сечением 1,5 см2 потребуется только 35. Помните, что не стоит наматывать половину витка — всегда округлите до одного в плюс. Расчет количества обмоток вторички такой же, как и для любого другого трансформатора — отношение выходного напряжения к входному напряжению в точности равно отношению количества вторичных обмоток к числу обмоток первички.

Следующий шаг — рассчитать толщину проводов обмоток. Самое важное, что следует учитывать при расчете толщины проводов, — это необходимость заполнить все окно ядра проволокой — от этого зависит магнитное соединение обмоток трансформатора, и, следовательно, падение выходного напряжения. Полное поперечное сечение всех проводов, проходящих через окно сердечника, должно составлять около 40-50% поперечного сечения основного окна (основное окно — место, где провод проходит через сердечник). Если вы впервые мотаете трансформатор, нужно приблизиться к этим 40%. В расчетах также должны учитываться токи, протекающие через поперечное сечение обмоток. Обычно плотность тока составляет 5 А / мм2, и это значение не стоит превышать, использование более низких плотностей тока является желательным. При моделировании ток первичной стороны составляет 220 Вт / 140 В = 1,6 А, поэтому сечение провода должно быть 0,32 мм2, значит его толщина составит 0,6 мм. На вторичной стороне ток 220 Вт / 54 В будет равен 4,1 А, что приводит к поперечному сечению 0,82 мм и реальной толщине провода 1 мм. В обоих случаях учитывалось максимальное падение напряжения при загрузке. Следует также помнить, что из-за скин-эффекта импульсных трансформаторов толщина провода ограничена рабочей частотой — в нашем случае на 30 кГц максимальная толщина провода составляет 0,9 мм. Вместо провода толщиной 1 мм лучше использовать два более тонких провода. После расчета количества катушек и проводов проверьте, соответствует ли расчетное заполнение медного окна 40-50%.

Первичная обмотка трансформатора должна быть размещена в двух частях. Первая часть первички (из 35 витков) мотается как первая, на пустой каркас. Необходимо сохранить направление обмотки к каркасу — вторая часть обмотки должна быть намотана в том же направлении. После намотки первой части необходимо припаять другой конец к переходному, укороченному штифту, который не входит в плату. Затем наложите 4 слоя изоляционной ленты на обмотку и намотайте всю вторичную обмотку — это означает метод намотки. Это улучшает симметрию обмоток. Следующая вторичная обмотка для напряжения +/- 12 В может быть намотана непосредственно на обмотку +/- 35 В в местах, где было сохранено небольшое количество свободного места, а затем полностью изолирована 4 слоями изоляционной ленты. Конечно также необходимо изолировать места, где концы обмоток приводятся к штифтам корпуса. В качестве последней обмотки намотайте вторую часть первичной обмотки, обязательно в том же направлении, что и предыдущий. После намотки можно изолировать последнюю обмотку, но не обязательно.

Когда обмотки готовы, сложите половинки сердечника. Лучшее и проверенное решение — это соединение изолентой с капелькой клея. Несколько раз обматываем сердечник изоляционной лентой.

Управляющий трансформатор сделан как и любой другой импульсный трансформатор. В качестве сердечника можно использовать небольшой EE / EI, полученный от блоков питания ATX. Также можете купить тороидальный сердечник TN-13 или TN-16. Количество обмоток зависит, как обычно, от поперечного сечения сердечника.

В случае тороидальных формула такая:

n = 8 / Qr,

  • где n — количество обмоток первичной обмотки,
  • Qr — площадь поперечного сечения сердечника, приведенная в см2.

Вторичные обмотки должны быть намотаны с таким же количеством витков, что и первичные, допускаются только незначительные отклонения. Поскольку трансформатор будет управлять только одной парой МОП-транзисторов, толщина провода не важна, его минимальная толщина составляет менее 0,1 мм. В этом случае 0,3 мм. Первая половина первичной обмотки должна быть намотана последовательно — изоляционный слой — первая вторичная обмотка — изоляционный слой — вторая вторичная обмотка — изоляционный слой — вторая половина первичной обмотки. Направление обмотки обмоток очень важно, здесь MOSFET-ы необходимо включать поочередно, а не одновременно. После намотки соединяем сердечник так же, как и в предыдущем трансформаторе.

Трансформатор тока похож на вышеуказанные. Количество катушек здесь произвольно, в принципе, достаточно количества обмоток вторичной обмотки:

n = 4 / Qr,

  • где n — количество обмоток вторичной обмотки,
  • Qr — площадь поперечного сечения окружности сердечника, приведенная в см2.

Но поскольку токи тут очень малы, лучше всегда использовать большее количество витков. С другой стороны, более важно поддерживать соответствующее соотношение количества витков обеих обмоток. Если решите изменить это соотношение, придется отрегулировать значение резистора R9.

Вот формула для вычисления R9 в зависимости от количества витков:

R9 = (0.9Ω * n2) / n1,

  • где n2 — количество обмоток вторичной обмотки,
  • n1 — количество обмоток первичной обмотки.

С изменением R9 также необходимо изменить C7 соответственно. Трансформатор тока легче наматывать на тороидальный сердечник, рекомендуем TN-13 или TN-16. Тем не менее, вы можете сделать трансформатор на Ш-сердечника. Если намотаете трансформатор на тороидальный сердечник, сначала намотайте вторичную обмотку большим количеством витков. Затем изоляционную ленту и, наконец, первичную обмотку проволокой толщиной 0.8 мм.

Описание элементов схемы

Почти все элементы можно найти в блоке питания ATX. Диоды D26-D29 с напряжением пробоя 400 В, но лучше взять немного выше, по меньшей мере 600 В. Готовый выпрямитель можно найти в блоке питания ATX. Диодные мосты для питания контроллера также целесообразно применять не менее 600 В. Но они могут быть дешевыми и популярными 1N4007 или похожими.

Стабилитрон, ограничивающий напряжение питания контроллера, должен выдерживать мощность 0,7 Вт, поэтому его номинальная мощность должна составлять 1 Вт или более.

Конденсаторы C18 и C19 могут использоваться с другой емкостью, но не менее 220 мкФ. Емкость более 470 мкФ также не должна использоваться из-за излишне увеличенного тока при включении инвертора в сеть и больших размеров — они могут просто не влезть на плату. Конденсаторы C18 и C19 также находятся в каждом блоке питания ATX.

Силовые транзисторы Q8 и Q9 — очень популярные IRF840, доступные в большинстве электронных магазинов по 30 рублей. В принципе, вы можете использовать другие МОП-транзисторы на 500 В, но это повлечет изменение резисторов R12 и R13. Установленные на 75 Ом обеспечивают время открытия / закрытия затвора около 1 мкс. В качестве альтернативы, их можно заменить либо на 68 — 82 Ома.

Буферы перед входами MOSFET и управляющим трансформатором I, на транзисторах BD135 / 136. Здесь могут использоваться любые другие транзисторы с напряжением пробоя выше 40 В, такие как BC639 / BC640 или 2SC945 / 2SA1015. Последний может быть выдран из блоков питания ATX, мониторов и т. д. Очень важным элементом инвертора является конденсатор C10. Это должен быть полипропиленовый конденсатор, адаптированный к большим импульсным токам. Такой конденсатор находится в блоках питания ATX. К сожалению, иногда он является причиной отказа источника питания, поэтому нужно тщательно его проверить прежде чем паять в схему.

Диоды D22-D25, которые выпрямляют напряжение +/- 35 В, использованы UF5408, подключенные параллельно, но лучшим решением было бы использовать одиночные диоды BY500 / 600, которые имеют более низкое напряжение падения и более высокий номинальный ток. Если возможно, эти диоды должны быть спаяны на длинных проводах — это улучшит их охлаждение.

Дроссели L3 и L4 намотаны на тороидальные порошковые сердечники из источников питания ATX — они характеризуются преобладающим желтым цветом и белой окраской. Достаточны сердечники диаметром 23 мм, 15-20 витков на каждом из них. Однако испытания показали, что они не нужны — инвертор работает и без них, достигает своей мощности, но транзисторы, диоды и конденсатор C10 становятся более горячие из-за импульсных токов. Дроссели L3 и L4 повышают эффективность инвертора и снижают частоту отказов.

Выпрямители D14-D17 +/- 12 В оказывают большое влияние на эффективность этой линии. Если эта линия будет питать предусилитель, дополнительные вентиляторы, дополнительный усилитель для наушников и, например, индикатор уровня, диоды должны использоваться по крайней мере на 1 A. Однако, если линия +/- 12 В будет питать только предусилитель, который тянет до 80 мА, даже можно использовать тут 1N4148. Дроссели L1 и L2 практически не нужны, но их присутствие улучшает фильтрацию помех от электросети. В крайнем случае вместо них можно использовать резисторы на 4,7 Ом.

Ограничители напряжения R22 и R23 могут состоять из серии силовых резисторов, соединенных последовательно или параллельно, чтобы получить один резистор с более высокой мощностью и соответствующее сопротивление.

Запуск и настройка инвертора

После травления плат начните сборку элементов, начиная от самых маленьких до самых больших. Необходимо припаять все компоненты, кроме дросселя L5. После завершения сборки и проверки платы установите потенциометр PR1 в крайнее левое положение и подключите сетевое напряжение к разъему INPUT 220 В. На конденсаторе C1 должно присутствовать напряжение 18 В. Если напряжение останавливается примерно на уровне 14 В, это означает проблему управления трансформатором или силовыми транзисторами, то есть короткое замыкание в цепи управления. Владельцы осциллографа могут проверить напряжение на транзисторных затворах. Если контроллер работает правильно, проверьте правильность переключения MOSFET.

После включения питания 12 В и источника питания контроллера на линии +/- 35 В должно появиться +/- 2 В. Такое дело означает, что транзисторы контролируются должным образом, поочередно. Если лампочка на блоке питания 12 В была включена и на выходе не было напряжения, это означало бы, что оба силовых транзистора открываются одновременно. В этом случае управляющий трансформатор должен быть отсоединен, а провода одной из вторичных обмоток трансформатора должны быть поменяны. Далее припаять трансформатор назад и повторить попытку с источником питания 12 В и лампой.
Если тест пройдет успешно и получим на выходе +/- 2 В, можно отключить источник питания лампы и припаять индуктивность L5. С этого момента инвертор должен работать от сети 220 В через лампу на 60 Вт. После подключения к сети лампочка должна кратковременно мигнуть и немедленно полностью отключиться. На выходе должно появиться +/- 35 и +/- 12 В (или другое напряжение в зависимости от соотношения оборотов трансформатора).

Загрузить их небольшой мощностью (например от электронной нагрузки) для тестирования и лампочка на входе начнет немного светиться. После этого теста нужно переключить инвертор непосредственно на сеть, а на линию +/- 35 В подключить нагрузку с сопротивлением около 20 Ом для проверки мощности. PR1 следует отрегулировать так, чтоб инвертор не отключается после зарядки нагревателя. Когда инвертор начнет нагреваться, вы можете проверить падение напряжения на линии +/- 35 В и рассчитать выходную мощность. Для проверки силовой мощности инвертора достаточно 5-10-минутного теста. За это время все компоненты инвертора смогут нагреться до их номинальной температуры. Стоит измерить температуру радиатора MOSFET, она не должна превышать 60C при температуре окружающей среды 25C. Наконец, необходимо нагрузить инвертор усилителем и установить потенциометр PR1 как можно больше влево, но чтобы инвертор не выключался.

Инвертор может быть адаптирован к любым потребностям по питанию различных УМЗЧ. При проектировании пластины старались, чтобы она была как можно более универсальной, для монтажа различных типов элементов. Расположение трансформатора и конденсаторов позволяет монтировать довольно большой радиатор МОП-транзисторов по всей длине платы. После надлежащего изгиба выводов диодных мостов, их можно установить в металлический корпус. Увеличение теплоотвода позволяет увеличить мощность преобразователя теоретически до 400 Вт. Затем необходимо использовать трансформатор на ETD39. Для этого изменения конденсаторы C18 и C19 требуются на 470 мкФ, C10 на 1.5-2.2 мкФ и использование 8 диодов BY500.


Для изготовления блоков питания усилителей мощности как правило применяются низкочастотные 50-герцовые трансформаторы. Они надежные, не создают вч-помех и сравнительно просты в изготовлении. Но есть и минусы – габариты и вес. Иногда такие недостатки оказываются решающими и приходится искать другие решения. Частично вопрос габаритных размеров (точнее, только высоты) решается применением торроидального трансформатора. Но такой трансформатор из-за сложности в изготовлении стоит немалых денег. И при этом все так же имеет значительный вес. Решением данной проблемы может стать использование импульсного блока питания.

Но тут свои особенности : сложность в изготовлении, или переделке. Чтобы приспособить под питание УМ компьютерный блок питания, необходимо перепаять половину платы и скорее всего, перемотать вторичную обмотку трансформатора. Но современная китайская промышленность выпускает в большом количестве 12-вольтовые блоки питания Ташибра и им подобные, обещая приличную выходную мощность, 50, 100, 150 Вт и выше. При этом стоимость таких блоков питания смешная.

На рисунке пара таких блоков, выше BUKO, ниже Ultralight, но по сути та же самая Ташибра. Они имеют небольшие отличия (возможно, были сделаны в разных провинциях Китая): вторичная обмотка Ташибры имеет 5 витков, а в BUKO – 8 витков. Кроме того, у Ultralight плата немного больше, предусмотрены места для установки дополнительных деталей. Несмотря на это, переделываются они идентично. Во время процесса доработки необходимо быть предельно аккуратным, поскольку на плате присутствует высокое напряжение, после диодного моста это 300 вольт. Кроме того, если случайно закоротить выход, то сгорят транзисторы.

Теперь о схеме.


Схема блоков питания от 50 до 150 ватт одинаковая, отличие только в мощности использованных деталей.

Что нужно доработать?
1. Нужно подпаять электролитический конденсатор после диодного моста. Емкость конденсатора должна быть как можно больше. При данной переделке был применен конденсатор 100мкФ на напряжение 400вольт.
2. Нужно заменить обратную связь по току обратной связью по напряжению. Для чего это нужно? Для того, чтобы блок питания запускался без нагрузки.
3. Если это необходимо, то перемотать трансформатор.
4. Нужно будет выпрямить выходное переменное напряжение диодным мостом. Для этих целей можно применить отечественные диоды КД213, или импортные, высокочастотные. Лучше конечно же Шоттки. Также необходимо сгладить пульсации на выходе конденсатором.

Вот схема переделанного блока питания.


Синим кружочком отмечена катушка обратной связи по току. Чтобы ее отключить, нужно обязательно выпаять один конец, чтобы не создать короткозамкнутой обмотки. После этого можно смело замыкать контактные площадки катушки на плате. После этого необходимо организовать обратную связь по напряжению. Для этого берется кусок провода от витой пары и на силовой трансформатор мотается 2 витка. Затем тем же проводом мотается 3 витка на трансформатор связи Т1. После этого к концам этого провода припаивается резистор 2,4 - 2,7 Ом, мощностью 5 – 10 Ватт. К выходу преобразователя подключается 12-вольтовая лампочка, а в разрыв провода питания включается лампочка на 220 Вольт, 150 Ватт. Первая лампочка используется в качестве нагрузки, а вторая в качестве ограничителя потребляемого тока. Включаем преобразователь в сеть. Если сетевая лампочка не засветилась, значит с преобразователем все нормально и можно эту лампочку убирать. Снова включаем в сеть, уже без нее. Если 12-вольтовая лампочка на нагрузке не засветилась, значит не угадали с направлением намотки катушки связи на трансформаторе связи Т1 и ее нужно будет намотать в другую сторону. Не забываем после отключения питания разряжать сетевой конденсатор резистором на 1 кОм.

Блок питания для УНЧ обычно биполярный, в данном случае необходимо получить 2 напряжения по 30 вольт. Вторичная обмотка силового трансформатора имеет 5 витков. При выходном напряжении 12 вольт получается 2,4 вольта на один виток. Чтобы получить 30 вольт, нужно намотать 30 Вольт/2,4Вольт = 12,5 витков. Следовательно, необходимо намотать 2 катушки по 12,5 витков. Для этого необходимо отпаять трансформатор от платы, временно смотать два витка обратной связи по напряжению и смотать вторичную обмотку. После этого наматываются простым многожильным проводом рассчитанные две вторичные обмотки. Вначале мотается одна катушка, потом другая. Соединяются два конца разных обмоток – это будет нулевой вывод.
Если будет необходимо получить другое напряжение, мотается больше/меньше витков.

Частота работы блока питания с катушкой связи по напряжению где-то 30 кГц.

Затем собирается диодный мост, подпаиваются электролиты и параллельно им керамические конденсаторы для гашения высокочастотных помех. Вот еще варианты соединения вторичных обмоток.

Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.
Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.

Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и «гибриды», где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.
Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.

Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.

Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.
Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.

Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.

Начну со списка заявленных технических характеристик:
Напряжение питания - 200-240 Вольт
Выходная мощность - 500 Ватт
Выходные напряжения:
Основное - ±35 Вольт
Вспомогательное 1 - ± 15 Вольт 1 Ампер
Вспомогательное 2 - 12 Вольт 0.5 Ампера, гальванически отвязано от остальных.
Размеры - 133 x 100 x 42 мм

Каналы ± 15 и 12 Вольт имеют стабилизацию, основное напряжение ±35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.
Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю - проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого - так у них же нет стабилизации напряжения.
Да, лично на мой взгляд - стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.
БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.

Вот собственно перед нами и пример БП для усилителей мощности.

Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.

Внешне выглядит красиво, особо и не придерешься.



Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.

Более понятные размеры есть на странице товара в магазине.

1. На входе блока питания установлен разъем, что оказалось довольно удобным.
2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.
3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.
4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.

В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.
Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.

Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.

Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).
Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.

Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.

На странице магазина, в перечне ключевых особенностей, было указано -

3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.
Что в переводе означает - в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.
Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.

Не забыли и про конденсатор, соединяющий «горячую» и «холодную» сторону БП, причем поставили его правильного (Y1) типа.

В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить «гибридные» варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.
В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.

Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.
Вообще на странице товара было написано -

1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.
В переводе - все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.

Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать «сюрпризы», так как заряд держится довольно долго.

Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.
Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.

По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.

На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было:(

Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.
Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.

Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи - два одинаковых варианта ± 70 Вольт и заказной вариант.

Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.
Примерно три с половиной года назад я выкладывал регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.

В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.

Если убрать из моего варианта все «лишнее», например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.
По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.

Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.

Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.
Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.
При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.

При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.
Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.

Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.
Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.

Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.
1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.
3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.

Нагрузочные тесты проходили так:
Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки - 25-50-75-100%.
Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.

А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.
Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.

Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.
1. Первый канал - 0 Ватт, 42.4 Вольта, второй канал - 126 Ватт, 33.75 Вольта
2. Первый канал - 125.6 Ватта, 32.21 Вольта, второй канал - 130 Ватт, 32.32 Вольта.
3. Первый канал - 247.8 Ватта, 29.86 Вольта, второй канал - 127 Ватт, 30.64 Вольта.
4. Первый канал - 236 Ватт, 29.44 Вольта, второй канал - 240 Ватт, 29.58 Вольта.

Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.

Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.
1. 25% нагрузки, КПД 89.3%
2. 50% нагрузки, КПД 91.6%
3. 75% нагрузки, КПД 90%
4. 476 Ватт, около 95% нагрузки, КПД 88%
5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.

В общем-то результаты примерно похожи на заявленные 90%

Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная «ложка дегтя» в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.
В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:
Диодный мост - 71
Транзисторы - 66
Трансформатор (магнитопровод) - 72
Выходные диоды - 75

Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем дургая
Диодный мост - 87
Транзисторы - 100
Трансформатор (магнитопровод) - 78
Выходные диоды - 102 (более нагруженный канал)

Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты " на холодную" с мощностью в 500 Ватт проходили нормально.

Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.

В общем теперь подведу некоторые итоги, отчасти неутешительные.
Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.

Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов.
В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.

Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема - нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.

Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение:)

На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +38 Добавить в избранное Обзор понравился +115 +179

Просмотров