Автомобильные диоды 12 вольт. Хорошие и плохие схемы включения светодиодов. Визуальное определение полярности

Получаю множество вопросов от читателей, как сделать правильное подключение светодиодов к 12 вольт и к сети 220В. Обычно только знают, что схема подключения светодиодов может быть параллельной или последовательной. Но диоды бывают не только одноцветные, но и трёхцветные RGB и четырехцветные RGBW. Для управления ими требуется RGB контроллер.


  • 1. Как подключить светодиод
  • 2. Обозначение светодиода на схеме
  • 3. Характеристики
  • 4. Этапы сборки
  • 5. Источники питания
  • 6. Подключение к батарейке 1,5В
  • 7. Питание от 5В
  • 8. Включение на 9V
  • 9. Как подключить светодиод к 12 вольтам
  • 10. Как подключить светодиод к 220в
  • 11. Подключение к 220В без драйвера
  • 12. RGB светодиоды и цветные

Как подключить светодиод

Основные технические характеристики светодиода описываются тремя параметрами:

  1. прямое напряжение;
  2. номинальный рабочий ток;
  3. номинальная мощность.

Наиболее распространены LED чипы с прямым напряжением в районе 3, 6, и 12 вольт. Модели на 6В и 12В используются преимущественно в автомобильных лампах, в бытовые изделия не устанавливаются.

Существует 2 способа подключения:

  1. к источнику напряжения, требуется ;
  2. к источнику тока, называется драйвер.

В первом варианте стабилизировано напряжение, оно должно превышать напряжение падения на диоде.

Пример.
Если падение составляет 3V на 1 led, а на 12 вольт., то для включения 1 диода с номинальным рабочим 0,1 Ампер получим следующий расчёт:

  • 12В – 3B = 9В
  • 9В / 0,1А = 90 Ом

Во втором варианте стабилизирована сила тока и схема подключения будет такая я же, как в первом варианте, только надо исключить резистор. Подбираются лед чипы с таким же номинальным током при последовательном подключении. Если ток драйвера слишком велик, а включить очень надо, то можно использовать параллельную схему. При такой схеме в каждой цепочке будет кратно снижаться.

Многие ошибочно думают, если подключить последовательно, то потребляемая мощность останется неизменной, потому что ток не надо будет увеличивать. Они забывают, что придется повысить вольты питания.

Обозначение светодиода на схеме

Обозначается на схеме двумя типами пиктограмм. Две стрелочки показывают что он излучает свет.

Характеристики

Перед расчётом схемы подключения светодиодов убедитесь в их параметрах и качестве. Китайцы очень часто обманывают, подсовывая LED с другими параметрами или с более низкой мощностью. Особенно хорошо у китайцев получается обманывать на SMD 5630 и SMD5730, общеизвестная мощность у них 0,5W. Цифры 5630 и 5730 обозначают только размер корпуса, например, 5,7мм на 3,0мм.

Пользуясь этим они устанавливают в стандартный корпус кристалл на 0,07W – 0,1W и затем продают их как с мощностью 0,5W. То есть световой поток будет в 5 раз меньше, чем вы ожидали. Хорошим примером будут светодиодные лампы кукурузы, которые просто утыканы маломощными LED в количестве от 20 до 130 штук. За счёт такого внешнего вида, кукуруза в глазах покупателя кажется мощнее, чем диодная лампа с 10 диодами, аналогичного энергопотребления.

Так же они изготавливают копии общеизвестных производителей особенно Cree и Philips. На настоящие КРИ и Флипсы они похожи только внешне, технические характеристики хуже на 30-40%.

Этапы сборки

..

Примерная последовательность сборки и проверки в рабочем режиме.

  1. найдите в документации технические характеристики, сколько вольт падает на каждом LED;
  2. составьте схему подключения учитывая напряжение питания;
  3. вычислите потребляемую мощность всей электрической цепи;
  4. подберите блок питания или драйвер подходящий по мощности;
  5. рассчитайте резистор в случае использования питания стабилизированным напряжением;
  6. найдите правильную полярность на ножках LED;
  7. припаяйте провода диодным компонентам;
  8. подключите источник питания;
  9. плотно установите диоды на радиатор и закрепите их;
  10. включаем всю конструкцию в сеть 220V предварительно зажмурившись;
  11. если ничего не взорвалось, то измеряем потребление энергии, нагрев, потребляемый ток;
  12. корректируем ток, если он оказался выше или ниже расчётного;
  13. прогреваем в течение 30 минут
  14. для китайских диодов температура на электрическом контакте не должна превышать 60°, для фирменных это указано в спецификациях, может быть максимум до 130° — 150°.

Алюминиевая звезда

Установка на систему охлаждения чаще всего требует хорошего оборудования и навыков. Поэтому диоды невысокой мощности 1W, 3W, 5W лучше покупать сразу на подложке из алюминия или меди в виде звезды. Таким образов вы не перегреете ножки и не испортите диодный чип. Затем звезду ставят на радиатор с использованием теплопроводной пасты.

Для припаивания проводов к звезде нужен паяльник помощней, потому что алюминий быстро забирает тепло от места контакта с припоем.

Источники питания

Чтобы подключить сверхяркие светодиоды к постоянному стабилизированному напряжению необходимо использовать токоограничивающий резистор. При мощности потребления энергии более 10W его использовать не рационально.

Самые распространённые имеют мощность:

  1. 0,5W в корпусе SMD;
  2. 1W, 3W, 5W в корпусе Эмиттер, круглый с ножками;
  3. квадратные COB диоды от 5W, 10W.

Самые распространённые стабилизированные источники:

  1. 1,5V – пальчиковые батарейки;
  2. 3,7V – литиевые аккумуляторы от телефонов;
  3. 5 Вольт — это USB зарядные устройства для смартфоном и планшетов;
  4. 9V – батарейка Крона;
  5. 12 вольт – бортовая сеть автомобиля, блоки питания от бытовой электроники;
  6. 19V – блоки питания от ноутбуков, хорошо стабилизированы, и выдают до 90W.

Для снижения количества вольт с источника питания нужен стабилизатор с возможностью регулировки. Обычно покупаю их на Aliexpress в средне по 2$ за модели на 2 Ампера, и 5$ за мощный модуль на 5 Ампер. В России на них цена слишком высокая, лучше купить заранее, но в 2-3 раза больше.

Подключение к батарейке 1,5В

Для подключения диода напрямую к батарейке с 1,5В требуется повышение до 3В. Это реализуется на небольших специализированных микросхемах. Чаще всего используется в аккумуляторных фонариках на одной пальчиковой батарее. Микросхема может быть стабилизатором Ампер или повышать только вольты. Если стабилизировано только напряжения, то для включения диода потребуется ставить сопротивление, которое тоже расходует энергию. Светодиодный драйвер более экономичен для фонарика.

Китайцы по 100руб. продают готовые платы со стабилизаторами, которые из 1.5 могут сделать от 2В до 5В. Кто дружит с паяльником, может сделать своими руками, микросхеме практически не требуется дополнительных элементов.

Питание от 5В

Самый популярный источник, в каждом доме есть несколько зарядных устройств и куча старых от кнопочных телефонов. При 5В подключать можно только параллельно по одному. Для последовательного соединения требуется минимум 6В.

Наглядным примером будет светодиодная лента на 5В. Из такой ленты и старых зарядных устройств делаю светодиодные светильники-ночники. На корпус клеится отрезок ленты длиной 3-4 см и подключается в USB гнездо. Если корпус разборный, то припаиваю провода внутрь, прямо к плате.

Светодиодная лента на 5В с питанием от USB

Включение на 9V

Батарейка Крона на 9В и регулятор яркости

Наиболее известным источником девяти вольт является батарея типа Крона. При небольших размерах она имеет очень малую емкость. Девять вольт позволят включить последовательно до 3 iner. Если 3 штуки включены последовательно, то небольшое снижение будет приводить к значительному уменьшению яркости. Если невозможно обеспечить хорошую стабилизацию, то придется уменьшить до 2 ЛЕД чипов.

Для регулировки яркости можно использовать миниатюрный диммер, цена которого 50 руб.

Как подключить светодиод к 12 вольтам

Стабилизатор на 12V

12 вольт уже обеспечивает широкие возможности по включению. Схема подключения светодиодов может быть последовательной по 3 штуки. Четыре штуки таким образом не включают, потому что следует учитывать снижение напряжения под нагрузкой. Например оно может снизится с 12В до 11В, что приведет к значительной потере светового потока.

Лучше всего использовать низковольтный драйвер, чтобы не использовать резистор. Такой стабилизатор работает от 12V имеет регулятор напряжения на выходе и настройку Ампер. К тому же по конструкции он проще, чем на 220В и не имеет трансформатора, только дроссель.

Примером будет светодиодная лента на 12В, в которой 3 LED и резистор включены последовательно.

В автомобильной сети, в том числе и прикуривателе, при заведенном двигателе бывает от 13,5В до 15В. Но скачки могут быть и до 30В. На заглушенном авто будет от 12В до 13В, зависит от уровня заряда автомобильного аккумулятора. Поэтому очень не рекомендуется включать LED без стабилизированного блока питания или стабилизатора тока. Китайские очень плохо переносят такие скачки, из-за низкого качества и плохих проводников у кристалла. Фирменные типа Cree Philips Osram могут долго работать в автомобиле и без стабилизатора, это было протестировано на светодиодных лампах для габаритных огней.

Как подключить светодиод к 220в

LED driver на 100вт и 50вт

Для подключения светодиода к сети 220В в схеме используют специализированные источники питания, которые могут называться светодиодный драйвер, источник тока, блок питания, стабилизатор. Его основными характеристиками являются силатока в Амперах и мощность. Драйвер может иметь фиксированный ток на выходе или настраиваемый. Если вы собираете осветительный прибор своими руками, то с регулятором будет удобней.

Как правило лед чипы подключаются к драйверу последовательно, что гарантирует одинаковый ток через каждый элемент электрической цепи. Недостатком такой схемы будет выход из строя всей цепи, если 1 ЛЕД сгорит.

Схема драйвера для светодиодов может быть различной, от простой на гасящем конденсаторе до современной, с коэффициентом пульсаций светового потока близкой к 0%.

Последовательное соединение

Классический пример такой конструкции, это светодиодная лампа на 220. Для модернизации старых светильников иногда использую начинку от лампочки. Пластинку с LED элементами ставлю на теплоотвод внутри светильника и рядом размещаю стабилизатор. Такая модернизация актуальна при апгрейде нестандартных люминисцентных ламп.

Теперь подключить светодиод к 220 стало просто, сложней определить коэффициент пульсаций светового потока. Если драйвер некачественный и плохо справляется с нагрузкой, свет будет мерцать с частотой 100 Герц. Реакция на эти пульсации индивидуальна у каждого человека. Чаще всего приводит к головным болям, усталости глаз и большому списку других негативных последствий.

Подключение к 220В без драйвера

Примером простого включения без драйвера будет светодиодная лента на 220V. На ней последовательно соединены 60 штук, которые питаются от выпрямителя состоящего из диодного моста. Недостатком такой схемы является пульсации света с частотой 100 Герц, которые очень вредны для здоровья, но каждый реагирует на это индивидуально. Такую ленту можно резать только по 60 LED.

LED лента с прямым включением в сеть 220

Такую же технологию стали использовать в больших COB диодах, внутри последовательно соединяют 60 кристаллов, чтобы сразу включать в сеть 220В.

Высокотехнологичные китайцы уже продают светодиодные модули и матрицы со стабилизатором, размещенном на одной подложке.

RGB светодиоды и цветные

Другие характеристики имеют LED для растений и цветные, их точные параметры производитель должен указывать при покупке. Одноцветные бывают нескольких видов:

  1. красный свет;
  2. синие;
  3. зеленые;
  4. желтые;
  5. ультрафиолетовые;
  6. инфракрасные.

Падение напряжения на кристалле зависит от излучаемого света, соответственно у них другое потребление энергии. Например, у красных падение в вольтах будет составлять 2 — 2,2В. Поэтому для каждого цвета RGB светодиода необходимо рассчитывать резистор отдельно на калькуляторе. RGB кристаллы не закрыты желтым люминофором, поэтому кристаллы и схему их подключения хороши видно через прозрачное силиконовое покрытие.

В предыдущих статьях были описаны различные вопросы подключения светодиодов. Но в одной статье всего не написать, поэтому придется эту тему продолжить. Здесь речь пойдет о различных способах включения светодиодов.

Как было сказано в упомянутых статьях, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. - напряжение питания, Uпад. - падение напряжение на светодиоде, R - сопротивление ограничивающего резистора, I - ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство - деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка - сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза. Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.

Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.

Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах - двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.

Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно. Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.

Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 - Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10. Такое устройство можно купить в интернет-магазинах. Цена вопроса 140…300 рублей: все зависит от фантазии и наглости продавца.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.

Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Казалось бы, на этом рассказ о светодиодах можно закончить. Но есть еще светодиодные ленты, о которых будет рассказано в следующей статье.

Понятие мощных и ярких светодиодов (LED) очень расплывчиво и точного определения нет. В эту категорию попадают изделия с высокой яркостью свечения и потребляемой мощностью. Данное определение появилось совсем недавно и обусловлено активным развитием светоизлучающих диодов в последние годы. Ранее они играли роль индикаторных лампочек и потребляли максимум, десятки мили Ватт. Сейчас они используются в освещении повсеместно. От освещения комнаты квартиры до подсветки дороги в фарах ближнего света автомобиля. И их потребляемая мощность достигает 100 Ватт и более (в основном это уже светодиодные сборки). Естественно, подобные светодиоды должны обладать высоким уровнем излучаемой яркости, соответственно и высокой мощностью. В рамках статьи разберемся, что представляют из себя мощные светодиоды и какие из них самые яркие.

Кто производит самые мощные и яркие LED

На рынке светодиодной продукции нишу в данном направлении заняла известная, американская фирма CREE.

В модельном ряде компании даже имеется две категории светодиодов:

  • XLamp — мощные;
  • High-Brightness – яркие.

Конечно, фирма CREE не единственная, а всего лишь одна из популярных. Конкуренцию составляют и другие фирмы, например Bridgelux, OSRAM, NICHIA.

Стоит отметить, что рынок наполнен китайскими подделками, мощность и яркость которых, существенно отличается от оригинальных. Например, срок службы оригинальных LED рассчитана 50 000 часов, в то время как китайские подделки еле дотягивают до 20 000 часов.

Характеристики мощных светодиодов

Большая часть ярких и мощных светодиодов работает от напряжения 12 Вольт. В редких случаях напряжение питания составляет 24 – 48 Вольт.

Как мы уже отметили ранее, понятие мощного светодиода не определено конкретно, поэтому некоторые определяют мощный светоизлучающий диод с параметром от 1 Ватта, а кто-то от 10 Ватт. Мы определим нижнюю границу в 0,5 Ватт. Т.к. с этой границы в свое время компания CREE показала миру первый мощный светодиод. Большой бум начался с границы в 1 Ватт.

Самый яркий и мощный

Посмотрим на характеристики самого супер яркого светодиода фирмы CREE – XLamp XM-L.

Для справки, в 2010 году разработанный LED XLamp XM-L установил мировой рекорд. Его соотношение яркости к мощности составило 160 Люмен на Ватт при потреблении тока 350 мА. Для того времени это было достижением в отрасли.

Характеристики мощного светодиода XLamp XM-L на 10 Ватт.

  • напряжение: 12 Вольт;
  • эффективность: до 160 Люмен на Ватт;
  • светоотдача: до 840 Люмен (при токе 3 А);
  • мощность: 10 Вт;
  • максимальный ток: 3 Ампера;
  • размер основания: 5 х 5 мм;
  • цветовая температура: холодный белый;
  • тепловое сопротивление: 2,5 градуса на Ватт;
  • прямое падение напряжения: не более 2,9 Вольт.

Максимальное значение тока достигает 3 Ампер, при этом светоизлучающий диод выдает уже 910 Люмен. В свое время светоизлучающий диод XLamp XM-L наделал много шума и на тот день все фирмы конкуренты не имели продукции даже близко похожей по техническим параметрам. Поэтому я и отметил фирму CREE, как лидера в данном направлении светодиодной техники. Они всегда на шаг впереди.

На сегодняшний день линейка LED XLamp XM-L производится для рынка только в холодном цвете, с чем это связано неизвестно. Но найти на прилавках магазином данный светодиод с цветовой температурой отличной от диапазона 5000 – 8300 невозможно.

Малыш ML-E

Еще один интересный мощный и яркий светоизлучающий диод от американской фирмы класса XLamp носит название ML-E.

Его мощность составляет всего 0,5 Ватт. По факту данный LED имеет хорошие показатели, посмотрим на них:

  • напряжение: 12 В;
  • тип исполнения: в корпусе PLCC4 (поверхностный монтаж) с теплоотводящей изолированной площадкой HeatSink;
  • габариты: 3,5 х 3,5 х 1,2;
  • эффективность: 112 Лм / Вт (очень высокое значение);
  • тепловое сопротивление: 11 градусов / Вт (хороший показатель);
  • максимальный ток: 175 мА (нормированный: 150 мА);
  • диапазон выпускаемых цветовых температур: 2600 – 8300 К;
  • яркость: 30 Люмен (теплый белый), 51 Люмен (холодный белый).

Для наглядной демонстрации возможностей CREE ML-E приведем пример подсветки багажника в автомобиле.

Пример яркости свечения ML-E

Список мощных и ярких светодиодов можно продолжать бесконечно, ведь мы рассмотрели для примера, характеристики, двух самых популярных на 0,5 и 10 Вт, а есть еще на 3w, 20w, 50w, 100w и т.д. Надеемся этого достаточно, чтобы у Вас сложилась в голове определенная картина и Вы нашли ответы на поставленные вопросы. Надеемся у Вас не осталось вопросов вроде – какие светодиоды самые яркие и мощные? Если, все же остались, пишите в комментариях, мы постараемся дать развернутые ответы.

Если бы человечеству было невыгодно использование светодиодов, то о них бы знал только ограниченный круг ученых. Но источник с принципиально новым видом излучения оказался весьма эффективным. Со временем маленькие кристаллики стали объединять по несколько штук в одном корпусе, научились также выращивать супер кристаллы увеличенных размеров. В результате получили ультраяркие светодиоды, или, как их еще называют, сверхяркие светодиоды, с широчайшими возможностями применения.

Сам по себе элементарный светодиод рассчитан на напряжение на более 3-5 Вольт. Его характеристики дают возможность применять такой элемент в целях индикации и для декоративного освещения. Однако ученым удалось разработать более мощные приборы, используя ряд ухищрений. Так на свет появились сверхяркие супер светодиоды на 12 Вольт. Применяя драйвер, устройство на 12 Вольт можно подключать к более высокому напряжению, в том числе к сети 220 Вольт.

Импульсное изменение яркости

Главным достоинством, которым обладает сверхъяркий супер светодиод на 12 вольт, являются его малые энергетические аппетиты и одновременно с этим яркий свет. Дополнительное преимущество – контролируемое изменение яркости светодиодов, для чего применяют контроллер. Получается, что прибор, в котором используются сверхяркие светодиоды, может уменьшить или увеличить интенсивность своего излучения.

Чтобы управлять яркостью светодиодов, применяют широтно-импульсную модуляцию. При таком методе уменьшить яркость можно, периодически выключая лампочку. Лампа пульсирует, и параметры пульсации будут определять интенсивность ее свечения.

Этот принцип работы позволяет расширить возможности светодиодов повышенной яркости. В итоге мы получаем функциональные:

  • фонарики;
  • автомобильные фары;
  • световую сигнализацию;
  • домашние светильники.

Заметим, что в сигнализации применяют мигающий светодиод на 5, 12 и даже 14 вольт, помогающий привлечь внимание к витринам, прилавку или окошку кассы. Используют также низковольтные приборы. Мигающий светодиод устроен несколько иначе, чем обычная индикаторная лампочка. В корпус, где находится кристалл, помещен чип импульсного генератора.

Чаще всего суперяркие светодиод на 12 вольт заменяют галогенные лампы, дающие направленный свет. Именно поэтому, производя лампы с использованием светодиодов, им делают стандартный цоколь E14, GU10 и некоторые другие.

Важные характеристики

Все суперяркие источники имеют такие же световые характеристики, как обычные светодиоды:

  • световой поток;
  • яркость;
  • светоотдача;
  • освещенность

Устанавливая 12-вольтную светодиодную лампу на тот или иной прибор, необходимо понимать, что ее эффективность зависит от длины волны излучения или, проще говоря, от цвета. Вот таблица, в которой приведена зависимость.

Но изучая эти характеристики, не каждый человек сможет понять, какой именно прибор ему подойдет. Гораздо легче определиться, глядя на электрические параметры: напряжение, максимальный прямой ток, мощность прибора.

Помимо этого существуют и другие характеристики. Суперяркие светодиоды могут быть созданы на основе одного кристалла или быть многокристальными. Такие характеристики, как длина волны и цветовая температура, отвечают за цвет свечения. Важные параметры – угол свечения, размер корпуса и количество светодиодов в одной лампе.

Разработка новых моделей привела к тому, что появилась еще одна отличительная черта – форма корпуса. Популярным корпусом для ультроярких светодиодов на 12 вольт является «пиранья», имеющая четыре вывода. Существуют также модели с двумя выводами и модели, предназначенные для поверхностного монтажа.

Каждой модели прибора соответствует своя таблица параметров, заглянув в которую можно выяснить особенности работы этого прибора.

Несколько предостережений

Главной проблемой при производстве суперярких светодиодов является проблема теплоотвода. Светодиоду нельзя перегреваться, иначе интенсивность освещения необратимо уменьшится. Особенно перегреву подвержены суперяркие приборы большой мощности, поэтому при самостоятельном монтаже необходимо обеспечивать их охлаждение с помощью радиатора.

Повышенное внимание обращайте на электрические параметры, не допуская подключения к напряжению, которое выше указанного в инструкции, и обеспечивая только допустимый ток. Таким образом, суперяркие источники смогут светить максимально долго.

Аккуратно обращайтесь с медными выводами, поскольку их перегиб или сильная деформации приведет к тому, что мощность сигнала изменится.

Впервые светодиоды начались использоваться в начале 60-х годов. С того времени произошло видоизменений. Светодиоды имеют массу преимуществ, таких как:

  1. Низкое потребление;
  2. Длительный срок службы;
  3. Прочность;
  4. Широкий выбор спектра света;
  5. Могут работать от низкого напряжения;
  6. Являются пожаробезопасными.

Потому как светодиодам для работы нужен только источник постоянного тока, следует производить монтаж с правильной полярностью. Когда диоды подключены неверно, функционировать они не будут. Чтобы их работа происходила правильно важно знать, как подключить светодиод.

Понимание плюса и минуса

Определяется полярность несколькими методами:

В старых моделях, в которых имеются длинные ножки, всё довольно просто. Ножка длиннее имеет полярность плюс (анод), что короче – минус (катод). Также на головке есть срез, который показывает расположение полярностей.

Если посмотреть внутрь диода, то контакт, который выглядит как флажок – это минусовой, тонкий будет плюсом.

Проверить можно посредством мультиметра. Чтобы это сделать, следует настроить его для «прозвона». С помощью щупов следует дотронуться к контактам. Когда он начнёт светиться – значит на красном контакте +, а на чёрном -.

Осуществление питания

Наиболее важным фактором при выборе питания выступают следующие значения: токовая сила и падение напряжения. Почти все они имеют расчет на токовую силу 20 миллиампер, однако, присутствуют модели, имеющие сразу 4 кристаллика, поэтому он должен быть рассчитан на силу тока в четыре раза больше. Также диод имеет свою допускаемую величину напряжения Umax, при прямом включении и Umaxобр, при обратном. Когда подаётся более высокое напряжение, происходит пробой, после чего кристаллы больше не функционируют. Есть также минимум напряжения, которого хватит для питания Umin, его хватит для работы светодиода. Эти минимальные и максимальные пределы значений называются зоной работы. В зоне работы и должна осуществляться работа светодиода. При неправильном расчете, светодиод просто перегорит.

На каждом светодиоде указывается определённое напряжение, маркировка расположена на упаковке. Важно знать, что это указано возможное падения напряжение, а не рабочее напряжение. Это нужно знать для того, чтобы высчитывать сопротивление резистора, задача которого ограничить ток. Для каждого отдельно взятого светодиода одного номинала, требуемое напряжение может отличаться. Важно для подключения следить за током, а не напряжением.

Данные источники света в своём большинстве потребляют номинальное напряжение 2 – 3 вольт. Противопоказано подключать их прямиком к 12 вольтам, без использования ограничительного резистора. Во многих случаях для экономии используют прямую схему подключения светодиода к батарейке, без использования резистора, но такой источник света прослужит очень недолго. Для сверх ярких светодиодов резисторы не используются, так как для них сделаны драйвера, которые могут ограничивать ток. Это наиболее современный вариант светодиодов.

Как рассчитать резистор

Есть формула расчета сопротивления резистора:

R= (Uпит-Uпад)/0,75I,

Величина сопротивления подразумевается R.

Напряжение питания Uпит.

Падающее напряжение Uпад.

Протекающий ток – I.

Постоянная величина коэффициента надёжности диода – 0.75.

Для примера рассмотрено подключение к 12 вольтному аккумулятору. Тогда будет:

  • Uпит – 12 вольта, что подразумевает аккумуляторное напряжение).
  • Uпад – 2.2 вольт, которым выступает напряжение для питания светодиода).
  • I – 0.01 ампер, показывает ток диода.

По данным цифрам можно произвести подсчёт по формуле, которая покажет, что получилась цифра 1.306. Так как у резисторов имеется определённый шаг, то подойдёт — 1.3 кОм.

Дальнейшей задачей будет вычисление требуемого минимума на мощность резистора. Нужно понимать точную цифру проходящего тока, потому что она может не соответствовать вышеуказанному. Вычисление можно произвести по такой формуле:

I = U / (Rрез.+ Rсвет)

Сопротивление, которым обладает диод:

Rсвет=Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

что говорит о том, что подсчитанный фактический ток будет:

I = 12 / (1300 + 220) = 0,007 А.

Для понимания фактического падения напряжения нужно посчитать:

Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

P = (Uпит. - Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт.

Мощность лучше брать с небольшим запасом. Сейчас будет в самый раз 0.125 Вт.

При подключении 1 светодиода к аккумулятору 12 вольт потребуется в сети резистор, который обладает сопротивлением 1.3 кОм и мощностью 0.125 Вт.

Подключение к сети 220 В

Для светодиодов, требующих ток от сети 220 В, важно знать важнейший пункт характеристики светодиода. Особенно это касается вопросов по теме, как подключить мощный светодиод. Характеристика состоит в наиболее допускаемой величине обратного напряжения. Во многих случаях оно составляет 20 В. Когда поступает сетевое питание, при обратной полярности (переменный ток) на него придёт полная амплитуда напряжения 315 В. Такое напряжение получилось потому что амплитудное напряжение почти в полтора раза выше действующего. Для работоспособности светодиодов помимо резистора, следует установить светодиод посредством последовательного подключения, который не позволит обратному напряжению пробить его.

Следующий вариант подключения от 220 В подразумевает расстановку двух диодов встречно-параллельно.

Подобный способ, где предусмотрено использование резистора – не считается правильным подключением. При использовании резистора 24 кОм, энергия рассеивания, будет приблизительно 3 Вт. А при подключении диода последовательно, можно уменьшить её в 2 раза. На обратное напряжение светодиод должен иметь напряжение не меньшее 400 В. Когда включаются 2 встречных светодиода, есть возможность вставки двух резисторов на два вата, чтобы сопротивление на каждом получилось в 2 раза меньше.

Важно понимать, что используя резистор с большим сопротивлением, к примеру, 200 кОм, есть возможность включения и без защитного диода. Так происходит, потому что обратный ток будет довольно слабым для повреждения диода. В этом варианте будет хуже яркость, но для некоторых целей, таких как подсветка, вполне хватит.

Так как сетевой ток переменный, имеется возможность включить в цепь конденсатор взамен резистора. Если сравнивать с ограничительным резистором, конденсатор не нагревается. Чтобы конденсатор мог пропускать переменный ток, сквозь него должно пройти оба полупериода сети. Так как светодиод может проводить ток лишь к одной из сторон, нужно поставить другой светодиод или диод встречно-параллельно. Это позволит пропустить второй полупериод.

Важно знать, что когда схема отключена от сети, конденсатор содержит в себе определённое напряжение, которое может равняться 315 В. Чтобы не произошел случайный удар током, следует провести установку разрядного резистора большего номинала, расположив его параллельно конденсатору. Запас мощности на конденсаторе служи для того, чтобы при обычной работе ток был незначительным и не вызывал нагрева. Чтобы обеспечить защиту от импульсных зарядных токов ставится низкоомный резистор, который будет являться предохранителем.

Мощность конденсатора должна быть от 400 В и выше. Есть варианты для цепей с переменным током напряжения, подойдут от 250 В и выше. Если требуется запустить несколько светодиодов, следует использовать последовательное соединение.

Когда происходит монтаж светодиодного освещения, расчёт диода должен происходить на ток, что будет не меньше, чем ток, проходящий сквозь светодиод. С обратным напряжением расчет должен быть таким, чтобы оно было не меньше, чем общее слагаемого напряжения на светодиодах. Используя данные рекомендации можно понять как правильно подключить светодиод.

Варианты подключений от 12 В

От 12 В подключать можно несколькими способами. Источником питания 12 В может использоваться аккумулятор. В этом примере производится подключение 3-х светодиодов.

Есть вариант подключить все через свой резистор, который выполнит функцию ограничения тока.

Другим вариантом будет включение всех светодиодов параллельным подключением, устанавливая 1 резистор, что рассчитан на тройной ток. Однако минус будет в разбросе параметров со светодиодами единого типа. Соответственно светодиод, что обладает самым слабым внутренним сопротивлением, первым пропустит повышенные токи и перегорит. После чего остальные сгорят тоже потому что ток для них будет очень сильный. В итоге приходится, как и в предыдущем варианте, устанавливать для каждого светодиода резистор.

Однако имеется альтернатива этому варианту. Можно сделать соединение последовательно, используя лишь один резистор. Так ток будет проходить сквозь каждый светодиод равномерно. Важно чтобы источник питания не имел напряжение выше сумм падения на каждом светодиоде. Далее важно правильно выбрать резистор ограничивающий ток и такой монтаж светодиодной подсветки способен работать длительный срок.

Вывод и видео

Для подключения светодиодов требуется обладать минимальным уровнем теоретических знаний, а также уметь паять. Если минимальные навыки и знания как правильно подключить светодиод присутствуют, то трудностей это не вызовет. Если есть сомнения, то вопрос как подключить светодиод, лучше доверить специалистам. Наиболее простой вариант, это установка светодиодных светильников, выполнить который можно без проблем самостоятельно.

Просмотров