Передняя опора шасси. Конструктивно- силовые схемы шасси Основные части и силовые схемы шасси

Летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата. Основные элементы С. ш. : амортизатор шасси (см. ), при балочной схеме тележки шасси он встроен в С. ш. , при рычажной — вынесен; ; складывающийся подкос, воспринимающий нагрузку от лотовых сил (уменьшающийся по длине при убирании С. ш. ); раскосы — стержни, расположенные по диагонали шарнирного многоугольника, образованного С. ш. и подкосом, и обеспечивающие геометрическую неизменяемость этого многоугольника; траверса — элемент крепления стойки к крылу или фюзеляжу (при подкосной С. ш. связь с летательным аппаратом осуществляется с помощью подкосов); механизм ориентации С. ш. , предназначенный для разворота стойки при её убирании или выпуске; узел у нижнего основания С. ш. для крепления оси колёс или тележки к С. ш. ; замки, обеспечивающие фиксацию С. ш. в выпущенном и убранном положениях; цилиндры механизма выпуска и убирания шасси. Консольная конструкция С. ш. , отличающаяся большой жёсткостью, исключает необходимость заднего подкоса. При рычажной и полурычажной схемах к С. ш. относятся также рычаги, на которых крепятся колёса. Передняя С. ш. включает цилиндры демпфера шимми летательного аппарата — устройство, защищающее летательный аппарат от вибрации колёс, и рулёжное устройство (с гидроцилиндром), предназначенное для поворота передней С. ш. при движении (рулении) летательного аппарата по земле, разбеге перед взлётом и пробеге после посадки.

В начальный период развития авиации С. ш. при полёте самолёта находились в воздушном потоке и являлись одним из основных источников аэродинамического сопротивления. Для его снижения сначала стали устанавливать обтекатели на колёса и С. ш. , а в 30-х гг. при создании скоростных самолётов началось широкое применение убирающегося шасси, хотя это и связано с увеличением массы и усложнением конструкции шасси.

Кинематика убирания С. ш. весьма разнообразна. На большинстве отечественных и зарубежных пассажирских самолётов они убираются вдоль по размаху крыла в сторону фюзеляжа; на самолётах семейства , как правило, — назад по потоку в специальные обтекатели; при этом тележка шасси поворачивается на 180° так, что передние колёса оказываются сзади. Такая компоновка предельно уменьшает размеры обтекателя.

В. М. Шейнин.


Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия . Свищёв Г. Г. . 1998 .

Смотреть что такое "стойка шасси" в других словарях:

    Стойка шасси - основной силовой элемент шасси летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата. Основные элементы … Энциклопедия техники

    Стойка шасси — основной силовой элемент шасси летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного… … Энциклопедия «Авиация»

    подкосная стойка шасси самолета (вертолета) - подкосная стойка Стойка шасси самолета (вертолета), связанная с самолетом (вертолетом) подкосами. [ГОСТ 21891 76] Тематики шасси самолетов и вертолетов Синонимы подкосная стойка … Справочник технического переводчика

    шасси - 1) автомобиля – собранный комплект агрегатов трансмиссии, ходовой части и механизмов управления, т. е. автомобиль без двигателя и кузова. Шасси ещё не способно двигаться самостоятельно, но его можно катать на колёсах. В литературе часто… … Энциклопедия техники

    Рис. 1. Схемы шасси. шасси (франц. châssis, от лат. capsa — ящик, вместилище) — совокупность опор летательного аппарата, необходимых для стоянки и передвижения на земле, для разбега при взлёте, а также пробега и торможения при посадке.… … Энциклопедия «Авиация»

Шасси

На всех самолётах семейства RRJ используется убирающиеся шасси, с передней управляемой опорой и тормозными основными опорами. Передние опоры одинаковы на всех модификациях.

Основные опоры могут иметь одно из двух исполнений:

  • в виде четырехколесной тележки, или
  • в виде двухколесной опоры.

Выбор типа (исполнения) основной опоры определяет Заказчик. Узлы навески различных опор унифицированы, а размер ниши шасси выбран из условия размещения в них любой опоры.

Схема расположения опор
Схемы разворотов при рулении
Кинематическая схема передней опоры показана на Рис. 1.3-10.

Основной двухколесной опоры – на Рис. 1.3-11.
Основной опоры с четырехколесной тележкой на Рис. 1.3-12.

1.3.8.1. Передняя опора

Передняя опора шасси состоит из:

  • амортизационной стойки,
  • складывающегося подкоса,
  • механизма распора,
  • двух запирающих пружин,
  • цилиндра подлома механизма распора,
  • цилиндра уборки-выпуска,
  • двух спаренных нетормозных колес с шинами.

Опора посредством гидроцилиндра убирается вперед по направлению полёта в нишу, расположенную в носовой части фюзеляжа, и удерживается в убранном положении гидромеханическим замком. Ниша закрывается двумя парами створок, приводимыми в действие от стойки передней опоры с помощью механизмов управления створками. При выпущенной опоре передняя пара створок закрыта. Уборка и выпуск опоры производится от гидросистемы самолёта.

Аварийный выпуск обеспечивается механическим открытием замка убранного положения опоры и замков закрытого положения створок и осуществляется под действием собственного веса опоры и пружин механизма распора.

Колёса передней опоры управляемые и могут разворачиваться под действием механизма разворота колёс (режим управления) или под действием внешней силы (режим самоориентации). При уборке опоры колёса устанавливаются в нейтральное положение. Передние опоры всёх самолетов семейства RRJ унифицированы.

1.3.8.2. Основная опора

– опора с двумя колесами, размещенными в виде «спарки».

Каждая основная опора шасси включает:

  • стойку амортизационную телескопического типа;
  • подкос складывающийся передний;
  • подкос складывающий задний;
  • устройство запирания подкоса складывающегося переднего от самопроизвольного складывания при выпущенной опоре — распор с двумя пружинами;
  • устройство запирания подкоса складывающегося заднего от самопроизвольного складывания при выпущенной опоре — распор с двумя пружинами;
  • гидроцилиндр уборки-выпуска;
  • гидроцилиндр распора;
  • гидроцилиндр распора.

Стойка крепится к конструкции крыла при помощи полуосей размещенных в траверсе. Подкосы, фиксирующие опору в выпущенном положении, крепятся к конструкции фюзеляжа шарнирно. Распоры с пружинами являются замками подкосов и, в свою очередь замками выпущенного положения опоры.

Гидроцилиндр каждого распора служит для преодоления эксцентриситета звеньев распора и вывода его из положения кинематического замка при уборке опоры.

В убранном положении опора фиксируется гидромеханическим замком.

Штатные уборка и выпуск осуществляются цилиндром уборки-выпуска от гидросистемы самолета.

Аварийный выпуск происходит под действием собственного веса опоры после механического открытия замков убранного положения.

Фиксация выпущенного положения производится под действием пружин распора. Опора оснащена двумя тормозными колёсами, размещёнными на одной общей оси, или колёсами, размещёнными попарно на двух осях.

Каждая тележка фиксируется двумя стабилизирующими пневмогидравлическими амортизаторами. Воздействие тормозного момента от колёс на тележку воспринимается четырьмя тормозными тягами.

Основные опоры всех самолётов семейства RRJ унифицированы. Амортизационная стойка обеспечивает восприятие нагрузок при разбегах и пробегах самолёта, поглощение энергии посадочных ударов, буксировку и швартовку самолета.

Стойка телескопического типа, имеет двухкамерный пневмогидравлический амортизатор с демпфированием на прямом и обратном ходе штока. Максимальный ход штока – 400 мм (15.75 in).

Стойка конструктивно состоит из:

  • цилиндра амортизатора;
  • штока амортизатора;
  • траверсы;
  • шлиц-шарнира;

Траверса при помощи двух полуосей шарнирно закреплена в нише основной опоры. На цилиндре амортизатора расположен узел крепления складывающегося подкоса. На подкосе расположен механизм распора с двумя пружинами и цилиндр распора. Цилиндр уборки-выпуска крепится к траверсе и каркасу.

Шлиц-шарнир соединяет цилиндр и шток амортстойки и фиксирует их от взаимного проворота. В нижней части штока имеется узел для установки спаренных колёс или четырехколёсной тележки. Основные двухколёсные опоры оборудованы тормозными колесами либо фирмы GOODRICH с шинами Н40х14,0-R19 (согласно сертификату EASA - http://www.easa.europa.eu/certification/type-certificates/docs/aircraft/EASA-TCDS-A.176_%28IM%29_Sukhoi_RRJ--95-01-03022012.pdf , стр. 12 - шины 40x14,5-R19 24PR 225 MPH), либо фирмы MICHELIN. Основные четырёхколёсные опоры оборудованы тормозными колёсами либо фирмы GOODRICH с шинами H30х9,5-R16, либо фирмы MICHELIN. Давление зарядки шин H40х14,0-R19, H30x9,5-R16 для различных самолетов семейства составляет: …

Конструкция 2-х и 4-х тележечного шасси разработана фирмой «Гражданские Самолеты Сухого».

RRJ0000-RP-100-041_Rev.B 1-34

Фото: Основная и передняя опоры самолёта SSJ100 | Интернет

Вопрос к уважаемым знатокам. Как вы считаете, почему до сих пор не используется электромеханическая система уборки-выпуска шасси. Казалось бы, задача вполне выполнимая - масса шасси постоянная и не такая уж большая, усилие уборки всегда одинаковое, требования к скорости уборки-выпуска - тоже не космические. Электромеханические домкраты существуют в природе, и вполне справляются с весами в 2-3 тонны (а шасси, наверное, легче), при достаточно малом весе, размерах, электропотреблении. Благодаря такой системе удалось бы существенно упростить гидравлическую систему самолета и повысить его надежность в целом. Может быть, даже уменьшить вес при этом (это нужно считать, конечно). Тем не менее, никто из авиа производителей так не делает. Не сомневаюсь, что они все умные, и, наверное, уж точно лучше меня знают, что к чему:). Но все же, почему так не делают до сих пор?

Гидравлическая система в самолете сложна совсем не потому, что ей нужно убирать/выпускать шасси..
Основная задача этих систем- приведение в действие системы управления самолетом - рулей направления и высоты, и элеронов, воздушного тормоза и щитков..
И если сделать привод уборки/выпуска шасси электромеханическим, то упростить гидросистему совершенно не удастся..
другое дело, что счас стараются перейти на смешанные системы приведения, где электричество используется в качестве резервной системы…
Но к шасси то это зачем?

На мой взгляд, есть несколько очевидных фактов, почему гидросистема упростится:
1) Исчезнут гидроцилиндры уборки-выпуска шасси, связанные с ними клапана и гибкие шланги высокого давления. Причем эти шланги - источник потенциального отказа системы.
2) В гидросистеме не станет больше потребителей, требующих больших расходов гидрожидкости. Все рулевые поверхности требуют достаточно небольших расходов, а уборка-выпуск шасси - это как стресс для гидросистемы - объемы цилиндров сравнительно большие, жидкости нужно прокачивать много и быстро. В связи с этим появится возможность уменьшить объемы гидробаков, оптимизировать систему в целом.

Далее мои предположения, но мне кажется, что это тоже важные вещи:
Возможно, в результате появится возможность исключить из гидросистемы дублирующие гидронасосы переменного тока ACMP1 и ACMP3. Сейчас в SSJ они в нормальной ситуации включаются в дополнение к основным только в момент уборки-выпуска шасси. Я предполагаю, что это сделано из-за нехватки производительности основных насосов - они рассчитаны на объемы, необходимые для рулевых поверхностей (небольшие объемы), а когда требуется большая производительность, их не хватает и в добавку включаются электро-насосы. Исключение этих насосов из системы - это еще одна возможность упрощения гидросистемы и уменьшения ее веса.

Ну а раз вы затронули тему рулевых поверхностей - давно меня мучает вопрос, не у кого спросить:). Везде в интернете пишут, что гидравлика до сих пор используется для привода рулевых поверхностей потому, что, дескать, существующие на настоящий момент электроприводы не в состоянии обеспечить потребные усилия и скорость перемещения рулевых поверхностей. Но вот есть пример из практики - ИЛ-62, надежная, проверенная машина, работает в том же диапазоне скоростей и высот, что и существующие гражданские самолеты. Рулевые поверхности у него на всех режимах полета перемещаются посредством мускульной силы пилотов:). Достигнуто это за счет тщательной проработки аэродинамической компенсации рулевых поверхностей. Если при должном подходе хватает мускульной силы пилотов, то это означает, что любые электроприводы могут тоже с этим справиться. Очень странно мне все это - почему нельзя использовать этот опыт для создания подобной схемы с электроприводами? Причем для их работы потребуется совсем небольшая электрическая мощность, а сами приводы из-за небольших потребных нагрузок могут быть компактными и легкими. Очень было бы интересно послушать мнения знающих людей - почему так не делают сейчас?

Ну, я конечно "валенок" в механике и авиации - но как-то и в автомобильном транспорте больше ГУР используют, хотя думаю требований по безопасности в автомобильной промышленности поменьше, чем в авиации. В авиации думаю, также немало важен фактор объема - гидроусилитель влезет в тонкое крыло, электроусилитель с "натягом" - хотя, повторюсь - это мнение полного "профана"…

1) Да, исчезнут..А что будет взамен их, Вы представление имеете? Электромоторы и редуктороры весят ого-го!! Кроме того, над к ним тянуть СИЛОВОЙ кабель и защишать его.
А гидравлические магистрали- все равно уже там, проходят аккуратненько мимо гидроцилиндров шасси:-) Что мы выигрываем?
И по соотношению усилие/вес гидравлика пока еще весьма на уровне. Это связано с тем, что даже моторы имеют не только тепловой предел, но и ограничены по насыщению магнитов.
2) С потребителями как раз проблем нету. Чем больше- тем лучше, гидрожидкость охлаждается хоть.. Тем более счас переходят на технику 5000psi - вопрос становится очень актуальным.. Так же, правда, как и борьба с течью.. :-(

А пот поводу рулевых поверхностей.
У электроприводов главный недостаток- высокая инерционность, что и сильно ограничивает его применение. даже у "компактных и легких"
Причем инерционность практически не зависит от размеров мотора, она всегда им пропорциональна…
То есть пока он стартанет, разгонится, начнет крутить- а уже панель перекладывать на другую сторону надо.
Клапана тут практически безинерционны, и мгновено реагируют на сигнал..
Так что до конца века гидравлики еще довольно далеко..

Re: Электромеханическая система уборки-выпуска шасси

Ого, жаль тут нет "плюсика", за такой комментарий я бы Вашу "карму" на этом форуме приподнял;-).

Да, спасибо за ответ. Есть над чем подумать:). Как всегда - кажется, что вот как все можно здорово переделать. Но не тут то было. Тем не менее, какие есть мысли у меня по этому всему:

1) Электромоторы тяжелые, и редукторы тоже. Но, если правильные люди над этим поработают, думаю, что по результату все не так-то будет и тяжелым. Хотя, это все мои рассуждалки и не более того. Есть примеры - в мире радиоуправляемых моделей - сейчас распространены бесколлекторные электродвигатели. Очень мощные и легкие одновременно. Хотя, конечно, согласен - до тех пор, пока на самолете есть гидросистема, нет смысла "дергаться" с шасси. Смысл появится только тогда, когда гидросистемы не будет совсем.

2) А чтобы гидросистемы не стало, нужно переводить рулевые поверхности на электричество. Действительно, про момент инерции я не подумал. Если это единственный оставшийся фактор, то вполне понятно, что с этим делать. Мотор должен быть с максимально легким ротором, работать как можно с меньшим количеством оборотов. Редуктор должен содержать как можно меньше шестерен, и все они должны быть облегчены. В результате такая система выдаст меньшее усилие на выходе. Т.е., помимо этого, нужно все же работать над уменьшением потребного усилия для привода рулевых поверхностей (например, аэродинамикой). Но это уже делали (ил-62), поэтому тут тоже понятно, что и как делать.

3) Остается один только вопрос - кто и когда это сделает:). К сожалению, то, что видно сейчас - все зажаты во временные и финансовые рамки. В таких условиях проще, дешевле, быстрее найти интегратора, который предложит готовое решение. Что-то мне подсказывает, что это решение не будет на электро-тяге. В этом замкнутом круге выход может быть только у каких-то больших корпораций, которые могут себе позволить дорогостоящие НИОКР по созданию приводов, и по их сертификации. Кстати, может кто знает - у Боинга на Дримлайнере - гидравлика или электроприводы? При первом поиске таких подробностей не нашел.

По иронии судьбы я этим как раз и занимаюсь:-)
И в принципе, обнадеживающие результаты есть. Есть некоторые компоновочные решения, которые позволяют мотору быть медленным и редуктору легким:-) Например, вполне элегантно выглядит компоновка полностью электрического ground spoiler actuator. Еще более элегантно выглядит привод закрылков.

Но занимаюсь я частным порядком, поэтому совершенно не факт, что смогу или захочу применять это в авиаиндустриии. Геморройно все там. Автомобилестроительная отрасль гораздо более падка на новизну и неслыханно щедра при этом:-)

Вертикальный силовой элемент ферменной конструкции фюзеляжа, также может служить для подкрепления и придания жёсткости крыльям и оперению . Кроме того, стойка шасси является основным силовым элементом шасси летательного аппарата , воспринимающим и передающим на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата.

Стойка в ферме

В ферменных фюзеляжах все нагрузки воспринимает пространственная ферма , составленная из трёх или четырёх плоских ферм. Основными силовыми элементами такой конструкции, помимо стойки, являются раскосы (подкосы), расчалки и лонжероны . Стойка в ферменной конструкции фюзеляжа работает на растяжение и сжатие . В настоящее время ферменные фюзеляжи почти не используют, им на смену пришли балочные фюзеляжи , где есть работающая обшивка , которая воспринимает вместе с каркасом из лонжеронов, стрингеров и шпангоутов изгибающие и крутящие моменты .

Стойка шасси

Стойка является основным силовым элементом шасси самолёта , воспринимающим и передающим на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и посадке. Основные элементы стойки шасси:

  • амортизатор шасси - для обеспечения максимальной плавности хода при движении по аэродрому, а также гашения ударов, возникающих в момент приземления (часто используются многокамерные азото-масляные длинноходные амортизаторы), могут быть установлены также дополнительные стабилизирующие демпферы ;
  • складывающийся подкос, воспринимающий нагрузку от лобовых сил;
  • раскосы - стержни, расположенные по диагонали шарнирного многоугольника, образованного стойкой и подкосом, и обеспечивающие геометрическую неизменяемость этого многоугольника;
  • траверса - элемент крепления стойки к крылу или фюзеляжу;
  • механизм ориентации стойки шасси - для разворота стойки при её убирании или выпуске;
  • узел у нижнего основания стойки - для крепления оси колёс к стойке;
  • замки, обеспечивающие фиксацию стойки в выпущенном и убранном положениях;
  • цилиндры механизма выпуска и убирания шасси.

В начальный период развития авиации стоки шасси при полёте самолёта были неубирающимися. Это было одним из основных источников аэродинамического сопротивления. Для его снижения сначала стали устанавливать обтекатели на колёса и стойки, а затем при появлении скоростных самолётов началось широкое применение убирающегося шасси, хотя это увеличивало массу и усложняло конструкцию шасси.

Проектировочный расчет шасси включает в себя подбор колес, амортизатора, а также геометрических параметров стойки и ее составляющих элементов.

Описание стойки шасси

Основные стойки четырёхколёсные, убираются назад по полёту в гондолы, с одновременным переворотом тележки и установкой её вдоль стойки (подобная кинематика широко используется на туполевских машинах). Колёса типа КТ-81/3 с размерностью 930х305 мм. Передняя стойка убирается назад по полёту, в нишу в передней части фюзеляжа. Колёса К-288 с пневматическими шинами высокого давления размерностью 660х200 мм. Ширина колеи основных стоек шасси -- 9.45 м (рисунок 5.1.1).

Рисунок 5.1 - Основная стойка шасси

На тормозных колёсах основных стоек установлена антиюзовая автоматика.

Разворот колёс передней стойки осуществляется посредством педалей у лётчиков. В рулёжном режиме угол разворота составляет ± 55є, во взлётно-посадочном режиме угол разворота ± 8є30ґ. При буксировке самолёта колёса ставятся в режим самоориентирования.

Нетормозное колесо К-288 представляет собой литой барабан из магниевого сплава со съемной ребордой 3, состоящий из двух половин, соединенных между собой болтами. Съемная реборда удерживается на барабане от боковых усилий буртиком, а отпроворотов -- насечкой на буртике и торце реборды. Для предотвращения попадания грязи во внутреннюю полость барабанов колес барабаны имеют защитные щитки 1, 4. Давление в пневматиках колес передней ноги -- 9+0.5 кгс/см2, разность давления в шинах не должна превышать 0.25 кгс/см2. Стояночная усадка пневматиков равна 20 -- 45 мм в диапазоне взлетных масс и 15--40 мм в диапазоне посадочных масс. В процессе эксплуатации колес допускается сетка старения шин, проколы и порезы глубиной до первого слоя корда длиной не более 40 мм, износ протектора по всей окружности без повреждения первого слоя корда.

Исходные данные

Выполнен расчет основной стойки шасси схемы с носовым колесом и соответствующими параметрами:

b=9.45м; а=14.12м; =0.24 рад; r =2 - количество стоек; =4 - количество колес на основной стойке. При расчете учтем, что проектируемый самолет будет эксплуатироваться на бетонных ВПП.

Подбор колес

Подбор колес начинается с выбора типов пневматика, который выбирается с учетом условий эксплуатации и значений посадочной и взлетной скоростей.

Так как самолет садится на бетонную ВПП, то следует установить пневматики высокого давления. Для стояночной нагрузки на колесо:

По полученным данным из сортамента авиационных колес выбираем колесо КТ 81/2 с характеристиками: , .

При этом условия, - выполняются.

Пересчитаем характеристики колес:

Коэффициент грузоподъемности колеса: .

Коэффициент перегрузки: .

При этом требование удовлетворяется. Учитывая то, что самолет садится на бетонную ВПП, принято. Тогда эксплуатационные нагрузки на колесо:

Так как стойка содержит спаренные колеса, то при посадке более нагруженное колесо воспринимает усилие: .

Определение основных параметров амортизатора

Эксплуатационная работа, поглощаемая амортизатором и пневматиком при посадке:

где - редуцированная масса;

Приведенная вертикальная составляющая скорости самолёта во время удара.

Одна стойка воспринимает эксплуатационную работу:

Вычислена эксплуатационная работа, поглощаемая одним пневматиком при посадке.

где - максимально допустимая работа;

Максимально допустимое обжатие пневматика;

Максимально допустимое усилие.

где - стояночное обжатие пневматика;

Коэффициент эксплуатационной перегрузки при посадке.

Для потребной энергоёмкости амортизатора получим:

Ход амортизатора вычислен по формуле:

где - эксплуатационная работа амортизатора;

Коэффициент полноты диаграммы обжатия амортизатора при восприятии работы;

Передаточное число при ходе поршня.

Полагаем, что стойка телескопическая и в момент касания колёсами земли ось стойки перпендикулярна поверхности земли.

Для определения поперечных размеров амортизатора найдена площадь, по которой газ воздействует на шток амортизатора. Выбраны значения параметров:

ч =0.1; ц 0 =0.97.

где х - количество амортизаторов на стойке;

z - количество колёс на основной стойке;

Стояночное усилие.

Для амортизатора с уплотнением, закреплёнными на цилиндре: внешний диаметр штока равен величине:

где - площадь, где газ воздействует на шток амортизатора.

Толщина уплотнительных колец. Тогда для внутреннего диаметра цилиндра:

Начальный объём газовой камеры находим по формуле:

Высота газовой камеры при необжатом амортизаторе равна:

Определён предельный ход амортизатора и. Вычислены вспомогательные величины:

где - максимальная стояночная работа;

Максимально допустимая работа;

Z - количество колёс в носовой стойке;

Начальное давление.

где - предельный ход амортизатора;

Передаточное число, соответствующее ходу штока;

Коэффициент полноты диаграммы обжатия амортизатора при поглощении работы.

Давление газа в амортизаторе при его максимальном обжатии равно:

Высота уровня жидкости над верхней буксой равна:

где - внешний диаметр штока;

Внутренний диаметр цилиндра.

При этом h жо +h г.о S max ; 0.7 + 0.33 ? 0.556.

Задаваясь значениями параметров

Конструктивный ход амортизатора;

Опорная база штока;

Суммарный размер узлов крепления амортизатора;

Получаем длину амортизатора в не обжатом состоянии.

Две основных опоры такого шасси располагаются за центром масс самолета, а третья опора устанавливается в носовой части фюзеляжа. Эта опора для обеспечения управляемости самолета на земле делается или свободно ориентирующейся, или снабжается принудительной системой разворота передних колес.

Схема характеризуется следующими параметрами:

b - база шасси;

B - колея шасси;

H - высота шасси;

e - вынос главных опор;

g - угол выноса главных опор;

jо - угол опрокидывания;

jст - стояночный угол.

Эти параметры связаны с посадочным углом α пос, установочным углом α уст и углом на разбеге α разб крыла.

Разбег самолета с данной схемой шасси выполняется в трехточечном положении при:

α разб = jст + α уст.

В конце разбега отклонением руля высоты летчик отрывает переднюю опору, а затем происходит и отрыв от земли основных опор. Посадка самолета происходит на основные опоры с улом атаки крыла

α пос = jо + α уст. + jст

с последующим переваливанием на переднюю опору. Условие переваливания обеспечивается углом выноса g = jо + (1 - 2)о.

Это условие дает величину относительного выноса e/b = 0,1 - 0,15, который показывает долю нагрузки от полной силы тяжести, приходящейся на переднюю опору при стоянке.

Отсутствие опрокидывания вбок обеспечивается углом e, равным (40 - 45)о, что соответствует относительной колее B/b = 0,7 - 1,2.

Схема шасси с передней опорой дает следующие важные преимущества:

Более простая техника пилотирования на взлете, посадке и пробеге;

Устойчивость движения на разбеге и пробеге, которая обеспечивается приложением сил трения колес главных опор за центром масс самолета;

Улучшенный обзор из кабины при движении по земле;

Простота маневрирования при использовании системы поворота передних колес;

Более интенсивное торможение на пробеге и возможность скоростной посадки, что обеспечивается исключением опасности капотирования самолета;

Близкое к горизонтальному положение пола пассажирских и грузовых кабин, а так же осей двигателей, что исключает обдув ВВП горячими газами ТРД.

К недостаткам схемы следует отнести большую за счет более длинной передней опоры массу шасси и возможность возникновения автоколебаний передней опоры типа "шимми". Для гашения этих колебаний передняя опора снабжается гидравлическими демпферами - гасителями колебаний передних колес.

Велосипедная схема шасси.

Шасси состоит из передней опоры, аналогичной передней опоре трехточечной схемы, и задней опоры, закрепляемой на фюзеляже позади центра масс самолета. Эта схема позволяет избежать установки основных опор шасси на крыле. В этом случае на крыле устанавливаются

только вспомогательные опоры, которые при отсутствии крена самолета могут не касаться земли

Основные параметры схемы:

b - база шасси;

H - высота шасси;

B" - колея подкрыльных стоек;

g - угол выноса основной опоры;

b - угол выноса передней опоры.

Различают два типа велосипедного шасси:

1) шасси с углом выноса задней опоры g = (25 - 30)о и e/b = 0,1 - 0,15.

Параметры такого шасси, кроме колеи, выбираются аналогично параметрам трехопорного шасси с носовой опорой. Взлет и посадка такого самолета ничем не отличаются от аналогичных режимов самолета с рассмотренной выше схемой шасси.

2) шасси с g = (40 - 60)о и e/b = 0,4 - 0,5.

Невозможность отрыва передней опоры на взлете требует взлета с обеих опор одновременно, а необходимое увеличение угла атаки крыла в конце разбега обеспечивается или удлинением передней опоры, или укорочением (приседанием) задней опоры. Сложность конструкции таких опор, сложность пилотирования самолета на взлете и посадке ограничивают применение данной схемы шасси. Обычно она используется лишь на военных самолетах.

Многоопорное шасси.

На тяжелых самолетах с очень большой взлетной массой для снижения и более равномерного распределения нагрузки на ВПП приходится увеличивать число опор шасси. В схеме с передней опорой может использоваться три, четыре и более основных опор. Число передних опор более двух сильно затрудняет маневрирование самолета на земле, поэтому даже на очень больших самолетах более двух передних опор не ставится. Для улучшения маневренности при большом числе опор кроме управляемых передних опор иногда делаются управляемыми и основные опоры - все или только некоторые из них (передние, задние). Параметры многоопорного шасси выбираются так же, как и параметры трехопорного. За точку опрокидывания в этом случае принимается точка приложения результирующей сил реакций земли на колесах основных опор при стоянке самолета.

При посадке самолет с многоопорным шасси вначале касается земли задними колесами основных опор, затем переваливается на остальные главные и передние колеса. Амортизаторы задних опор, которые первыми касаются земли делаются более мягкими, чем остальные.

Нагрузки шасси.

При взлете и посадке самолета, при его движении по аэродрому, на стоянке на колеса шасси действуют статические и динамические нагрузки. Их величина и направление определяются схемой шасси, условиями и характером посадки, типом ВПП, характеристиками амортизационной системы и др. Эти нагрузки можно представить в виде приложенных к колесам трех составляющих сил, направленных по основным координатным осям самолета:

Px - сила переднего удара;

Py - вертикальная сила;

Pz - сила бокового удара.

Величина этих нагрузок определяется нормами прочности или авиационными правилами (АП), которые задают основные расчетные случаи нагружения шасси, перегрузку и коэффициент безопасности для каждого случая, величину нагрузки, ее направление и распределение между опорами и колесами. По найденным таким образом нагрузкам строятся расчетные эпюры и проводятся все необходимые прочностные расчеты.

Конструктивно - силовые схемы шасси.

Опора шасси состоит из основного силового элемента - стойки, устройства для поглощения и рассеивания энергии ударных нагрузок - амортизатора и опорных устройств - колес.

Конструктивно-силовые схемы опор шасси можно классифицировать по следующим признакам:

Способу крепления стойки к самолету;

Способу размещения амортизатора на опоре;

Способу крепления колес к стойке.

Способы крепления стойки к самолету.

По этому признаку различают консольную и подкосную схемы крепления стоек.

При консольной схеме стойка жестко закрепляется (защемляется) в верхнем узле крепления и в силовом отношении представляет собой работающую на изгиб консольную балку. Жесткая заделка обеспечивается запиранием стойки в выпущенном положении механическим замком той или иной конструкции. Защемление неубирающейся стойки обеспечивается конструкцией узла ее крепления.

Основной недостаток данной схемы заключается в том, что в корневой части стойка воспринимает большие изгибные нагрузки, сильно увеличивающие ее массу.

В подкосной схеме стойка (1) снабжается дополнительными подкосами (2) в одной или двух плоскостях, которые существенно снижают изгибающие моменты в корневой части стойки и, как правило, обеспечивают общий выигрыш в массе шасси.

Подкосы для обеспечения уборки могут быть складывающимися. В качестве подкоса иногда используются подъемники шасси. В обоих случаях должна обеспечиваться надежная фиксация стойки в выпущенном положении. Подкосная схема кроме выигрыша в массе конструкции, обеспечивает и более жесткое закрепление стойки к самолету, что благоприятно сказывается на устранении некоторых видов автоколебаний стоек, возникающих при движении самолета по земле. Схема подкосного шасси получила самое широкое распространение на современных самолетах.

Схемы размещения амортизаторов.

В зависимости от расположения амортизатора относительно силового элемента опоры - стойки, различают телескопическую (а), рычажную (б и в) и полурычажную (г) схемы стоек.

Телескопическая (а) стойка объединяет в себе силовой элемент - трубчатую стойку и амортизатор. Труба стойки выполняет роль цилиндра амортизатора, внутрь которого входит шток с поршнем, образуя с цилиндром телескопическую пару. На нижнем конце штока подвешиваются колеса. Чтобы исключить вращение штока в цилиндре оба этих элемента соединяются двухзвенником (шлиц-шарниром), обеспечивающим только поступательное движение штока в цилиндре при действии осевой сжимающей нагрузки. К недостаткам этой схемы следует отнести отсутствие амортизации боковых нагрузок и нагрузок переднего удара, а также большое трение в буксах и уплотнении амортизатора при действии этих нагрузок. Частичную амортизацию переднего удара при этой схеме можно обеспечить, придав стойке некоторый угол наклона в продольной плоскости, параллельной плоскости симметрии самолета. Большего участия амортизатора в восприятии силы переднего удара можно получить, используя качающуюся телескопическую схему стойки. В этой схеме стойка шарнирно подвешивается в верхнем узле крепления и фиксируется в выпущенном положении жестким подкосом, присоединенным спереди к среднему шарниру двухзвенника. При переднем ударе в колеса усилие в подкосе заставляет обжиматься амортизатор, что обеспечивает снижение нагрузок и более мягкую передачу энергии переднего удара на конструкцию шасси и самолета. При обжатии амортизатора происходит поворот (качание) стойки относительно верхнего шарнира, чем и объясняется название данной схемы.

Рычажная схема стойки характерна тем, что колеса в этом случае закрепляются на рычаге, который шарнирно крепится к стойке или фюзеляжу.

Шток амортизатора соединяется с рычагом пространственным шарниром, что полностью исключает передачу на амортизатор изгибающих моментов и обеспечивает идеальные условия для работы уплотнения и букс амортизатора. Используются такие разновидности рычажных стоек:

Рычажная стойка с внутренним амортизатором, который размещен внутри стойки (б);

Рычажная стойка с выносным амортизатором, закрепленным снаружи стойки (а);

Рычажная схема без стойки (г).

Кроме улучшения условий работы амортизатора, рычажная схема обеспечивает амортизацию переднего удара, при котором происходит поворот рычага и обжатие амортизатора.

Полурычажная схема (в) представляет собой комбинацию телескопической и рычажной стоек. В этой схеме рычаг с колесами шарнирно подвешивается не к стойке, а к штоку амортизатора, и между рычагом и стойкой спереди с помощью двух шарниров устанавливается дополнительное звено - серьга, обеспечивающая обжатие амортизатора при нагружении колес. Амортизатор включается в работу и при вертикальной нагрузке, и при переднем ударе в колеса, однако сама сила переднего удара передается на шток и вызывает его изгиб.

Схема крепления колес.

Крепление колес к штоку амортизатора или к рычагу может выполняться с помощью вилки, полувилки, полуоси или двух полуосей.

Размещение более четырех колес на одной оси сильно затрудняет маневрирование самолета и размещение колес в убранном положении. Поэтому для четырех и более колес на одной опоре обычно используются многоколесные тележки, рассчитанные на размещение четырех, шести или восьми колес на двух или трех осях. Оси колес устанавливаются на силовом элементе - раме тележки. Крепление осей к раме может быть неподвижным или подвижным (в подшипниках скольжения) в зависимости от способа передачи тормозных моментов с колес на стойку.

Для выравнивания нагрузок между осями тележка подвешивается к стойке шарнирно, что требует установки дополнительного стабилизирующего амортизатора, задающего положение тележки относительно стойки и демпфирующего колебания тележки относительно шарнира.

Использование многоколесных тележек шасси требует особого способа передачи тормозных моментов колес на стойку. Если тормозные моменты колес передавать на оси тележки, то рама тележки под действием этих моментов будет поворачиваться относительно шарнира тележки, увеличивая нагрузку на передние колеса и разгружая задние.

Это приводит к неравномерному износу колес и снижает эффективность торможения на пробеге. Чтобы исключить влияние тормозных моментов на перераспределение нагрузки между осями колес эти моменты обычно не передаются на раму тележки. В этом случае корпус тормоза устанавливается на оси подвижно (или ось вместе с корпусом тормоза шарнирно закрепляются в раме) и удерживается от вращения при торможении специальной тягой, закрепленной на стойке (штоке амортизатора) выше или ниже шарнира подвески тележки. Расположение такой тормозной тяги должно подчиняться простому правилу - ось тяги должна быть направлена в точку пересечения линии, проходящей через ось шарнира тележки и ось колеса, с линией земли при обжатых пневматиках колес. Если шарнир тележки и оси колес расположены на одной горизонтали, то тормозная тяга располагается горизонтально.

Особенности крепления передних колес.

Особенности конструкции передних опор шасси связаны с необходимостью обеспечения управляемости самолета при движении по земле. С этой целью для передних колес обязательно предусматривается режим свободного ориентирования. Устойчивость движения в таком режиме обеспечивается созданием плеча устойчивости(t), при котором точка касания земли колесами находится позади оси разворота колес.

После отрыва самолета от земли свободноориентирующиеся колеса должны автоматически устанавливаться в нейтральном положении в плоскости симметрии самолета. Для этого в конструкции передней опоры предусматривается специальный механизм установки колес в нейтральное положение. Один из них показан на рисунке. В этом амортизаторе имеется пара профилированных кулачков, один из которых связан со штоком (верхний), а другой - с цилиндром. После отрыва от земли давлением зарядки амортизатора шток выдвигается наружу и верхний кулачек, скользя по нижнему неподвижному кулачку, устанавливает шток и колеса в нейтральное положение.

При движении самолета по земле с большой скоростью деформация колес и стоек под нагрузкой вызывают резкие развороты колес в обе стороны.

Такие автоколебания передних стоек получили название «шимми». Для исключения "шимми" передние колеса снабжаются специальными гидравлическими демпферами. При развороте колес движение передается на поршень или лопатки этого демпфера, которые перегоняют жидкость из одной полости в другую через малые калиброванные отверстия.

При быстрых колебательных движениях колес сопротивление жидкости резко возрастает, что исключает развитие автоколебаний. При маневрировании самолета скорость разворота колес мала и демпфер не оказывает существенного влияния на рулежные качества самолета.

На тяжелых самолетах, на самолетах с велосипедным шасси передние опоры снабжаются системой принудительного разворота колес по командам летчика. При отключении этой системы колеса переходят в режим свободного ориентирования.

Основные опорные элементы шасси.

В качестве опорных элементов шасси у современных сухопутных самолетов наибольшее распространение получили авиационные колеса. На главных опорах колеса обязательно снабжаются тормозами. Хвостовые опоры, вспомогательные опоры велосипедного шасси и большинство передних опор используют нетормозные колеса.

Авиационные колеса.

Колеса служат для движения самолета по земле. Колесо состоит из пневматика, корпуса и тормоза.

Пневматики.

Пневматик состоит из покрышки и камеры, устанавливаемых на корпусе колеса. Камера 4 с вентилем 5 помещается внутри покрышки.

Через вентиль в камере создается давление зарядки p0. В последнее время все большее распространение получают пневматики бескамерные, у которых герметизируется объем между покрышкой и корпусом колеса. В таком пневматике покрышка изнутри покрывается

герметизирующим слоем резины 7. Многослойный каркас пневматика 3 изготавливается из высокопрочного корда, состоящего из синтетических или стальных нитей. В борта каркаса заделываются кольца жесткости 6, изготавливаемые из стальной проволоки. Снаружи каркас покрывается защитным слоем резины 2. По ободу пневматика накладывается протектор 1 из высококачественной резины. Протектор снаружи для увеличения сцепления с поверхностью аэродрома имеет канавки определенного рисунка. Не тормозные колеса могут изготавливаться с гладкой поверхностью. На пневматиках, используемых зимой, для повышения сцепления с грунтом могут устанавливаться металлические шипы. Канавки на поверхности пневматика обеспечивают выдавливание воды из-под него при движении по мокрому аэродрому, исключая тем самым, режим аквапланирования (всплывания) колес на большой скорости.

Пневматики характеризуются:

Габаритными размерами;

Наружным диаметром D;

Наибольшей шириной B;

Формой поперечного сечения:

Баллонные,

Арочные,

Круглые,

Давлением зарядки:

Высокого давления - больше 1,5 МПа,

Среднего давления - 1 - 1,5 МПа,

Низкого давления - 0,5 - 1 МПа,

Сверхнизкого давления - менее 0,5 МПа.

С увеличением давления зарядки p0 уменьшаются габариты и масса пневматика, увеличивается допустимая нагрузка на колесо, но ухудшается его проходимость - растет требуемая прочность грунта или покрытия ВПП аэродрома.

Корпус колеса.

Корпус колеса (6) изготавливается литьем из алюминиевого или титанового сплава. В последнее время появились колеса с корпусами из двух штампованных половин, соединяемых болтами. В ступицу корпуса с двух сторон запрессовываются радиально-упорные подшипники.

Подшипники защищаются от грязи специальным уплотнением 1. Между подшипниками вставляется регулируемая распорная втулка 2, тарируемая на определенную затяжку подшипников. Пневматики монтируются на корпус и фиксируются на нем двумя ребордами 3 и 4, одна из которых (4) - съемная, состоит из двух половин, которые соединяются специальными замками 5.

Внутри корпуса колеса устанавливаются тормоза (7). В зависимости от типа тормоза к внутренней поверхности корпуса крепятся стальные оребренные тормозные рубашки или

устанавливаются шлицы (8) для тормозных дисков

Тормоза колес.

Тормоза служат для сокращения длины пробега после посадки, обеспечивают маневрирование самолета при рулении, его неподвижность на стоянке и при опробовании двигателей. Тормоза должны обеспечивать создание максимального тормозного момента на колесе, определяемого предельной величиной коэффициента трения колеса о поверхность ВПП, а также поглощение и рассеивание кинетической энергии самолета на пробеге.

Практическое применение получили три типа тормозов - колодочный, камерный и дисковый.

Колодочный тормоз состоит из двух или более жестких тормозных колодок, покрытых специальным фрикционным материалом (ретинакс), имеющим высокий коэффициент трения и выдерживающий нагрев до 10000 С.

Колодки шарнирно подвешиваются на корпусе тормоза, который неподвижно закреплен на оси колеса. Снаружи над колодками находится стальной барабан с оребрением (рубашка), связанный болтами с корпусом колеса и вращающийся вместе с ним. Тормозные колодки специальными гидроцилиндрами по сигналам летчика прижимаются к барабану и затормаживают колесо. При растормаживании пружины возвращают колодки в исходное положение.

Энергоемкость колодочного тормоза невелика, поэтому его применение оправдано лишь на легких самолетах с невысокими посадочными скоростями.

Камерный тормоз состоит из неподвижно закрепленного на оси колеса корпуса тормоза 2, на котором по окружности установлено большое количество тормозных колодок 4, покрытых фрикционным материалом.

Колодки за счет радиальных пазов могут перемещаться относительно корпуса только в радиальном направлении, причем специальными пластинчатыми пружинами 6 они отжимаются постоянно к оси колеса. На корпусе тормоза под колодками находится плоская кольцевая резиновая камера 3, в которую подается сжатый воздух или гидросмесь под давлением из тормозной системы самолета. Камера, расширяясь и преодолевая действие пружин, прижимает тормозные колодки к стальному барабану, закрепленному на корпусе колеса, и производит его торможение. Такой тормоз обеспечивает равномерное прижатие всех тормозных колодок к барабану, не требует регулировки зазоров между колодками и барабаном, но из-за наличия резиновой камеры, которая боится перегрева, его энергоемкость также невелика.

Дисковый тормоз работает по принципу фрикционной муфты. Он состоит из набора чередующихся между собой подвижных и неподвижных дисков, установленных на корпусе тормоза.

Подвижные диски 1 шлицами связаны с корпусом колеса 2 и вращаются вместе с ним. Неподвижные диски 3 по внутренней поверхности шпонками связаны с корпусом тормоза 4, болтами закрепленного на оси колеса. С торца пакет дисков сжимается кольцевым поршнем 5, создавая тормозной момент между дисками. При сбрасывании тормозного давления поршень специальными пружинами возвращается в исходное положение.

Дисковые тормоза компактны, обладают высокой энергоемкостью, не требуют точного концентричного расположения колеса и корпуса тормоза, поэтому они нашли самое широкое применение на современных самолетах.

Автомат торможения используется для предотвращения при торможении полного заклинивания колеса и его движения юзом.

С этой целью на колесе устанавливается инерционный датчик, корпус которого неподвижно закреплен на корпусе тормоза. В корпусе датчика вращается валик с малой шестерней 1. Эта шестерня входит в зацепление с большой шестерней 2, закрепленной на корпусе колеса. При вращении колеса валик датчика вращается со скоростью в несколько тысяч оборотов в минуту.

На валике устанавливается маховик, который соединяется с валиком подпружиненными фрикционными накладками. Силы трения в этих накладках раскручивают маховик, и он вращается совместно с валиком. При возникновении юза колесо и валик датчика начинают терять угловую скорость вращения. Маховик за счет сил инерции и, преодолевая силы трения в накладках, проворачивается относительно валика и за счет наклонных скосов перемещается вдоль оси. Это движение используется для включения микровыключателя и подачи сигнала в электроклапан, сбрасывающий давление в системе торможения. Тем самым исключается проскальзывание колеса юзом и обеспечивается высоквая эффективность торможения колес на пробеге.

Амортизаторы шасси.

Во время посадки самолет с посадочной массой mпос подходит к земле с некоторой вертикальной скоростью Vy . Кинетическая энергия вертикального движения самолета

А = (mпос Vy2)/2 должна быть поглощена в процессе соударения с землей теми частями самолета, которые деформируются под действием ударных нагрузок. За счет этих деформаций центр масс самолета опускается вниз к земле или, можно считать, что колеса перемещаются относительно центра масс самолета вверх под действием вертикальной реакции земли P. В конце удара вертикальная скорость самолета падает до нуля, силы реакции земли возрастают до максимальной величины Рmax, а работа этих сил на полном перемещении колес относительно центра масс самолета Нmax будет равна полной кинетической энергии удара А. Величина Рmax определяет перегрузку и расчетные нагрузки для всех элементов самолета при посадке. Для их

уменьшения всегда желательно снижать величину Рmax, а это возможно только за счет увеличения перемещения Нmax в процессе соударения самолета с землей. С этой целью в конструкцию шасси включают специальные элементы - амортизаторы, основное назначение которых заключается в увеличении деформаций опор самолета и увеличения Hmax. Кроме амортизаторов, на перемещение центра масс самолета при ударе существенно влияют деформации пневматиков колес. Упругие деформации конструкции - крыла, фюзеляжа и пр. мало влияют на перемещение Hmax и ими обычно пренебрегают.

Таким образом, основным свойством, которым должен обладать амортизатор, является его упругость - способность деформироваться под нагрузкой.

В процессе удара пневматики колес и амортизаторы, деформируясь, поглощают (аккумулируют) всю энергию удара А. В конце удара, когда скорость Vy полностью погашена, сила Рmax, действуя на самолет, начинает перемещать его вверх и возвращать накопленную в пневматиках и амортизаторах энергию обратно самолету. Энергия, накопленная пневматиками, практически полностью возвращается самолету на обратном ходе. Если бы и амортизаторы всю накопленную энергию возвращали самолету на обратном ходе, то самолет снова отрывался бы от земли и совершал бы такие подскоки достаточно долго. Чтобы этого не происходило, в конструкции амортизатора обязательно предусматривается возможность уменьшения усилий, а, следовательно, и возвращаемой самолету на обратном ходе энергии.

В результате - амортизатор часть энергии удара рассеивает, превращая ее обычно в теплоту, полностью исключая повторные подскоки самолета при посадке.

Отсюда следует, что вторым важнейшим свойством амортизатора является его способность рассеивать энергию удара, превращая ее в тепло.

Упругие свойства амортизатора обеспечиваются включением в его конструкцию специальных упругих тел или элементов - резины, стальных пружин, рессор, газа, жидкости. По удельной (на единицу массы) энергоемкости наиболее выгодными из них являются газ и жидкость, которые используются в жидкостно-газовых и жидкостных амортизаторах, получивших самое широкое применение на современных самолетах. Жидкость в этих амортизаторах обеспечивает рассеивание энергии за счет ее перетекания с большим сопротивлением из одной полости в другую, что сопровождается нагревом жидкости и переводом механической энергии в тепловую.

Жидкостно-газовый амортизатор.

Основными элементами жидкостно-газового амортизатора являются цилиндр 1, поступательно перемещающийся в нем шток 2, плунжер 3, профилированная игла 4, клапан торможения 6, пакет уплотнений 7, обеспечивающий герметизацию внутреннего объема амортизатора. Шток опирается на цилиндр бронзовыми буксами. Верхняя букса 5 связана со штоком и перемещается вместе с ним, а нижняя закреплена неподвижно в нижней части цилиндра. Амортизатор через специальные клапаны заливается до определенного уровня жидкостью и заряжается сжатым азотом до начального давления ро.

При действии сжимающих нагрузок шток входит в цилиндр, объем газовой камеры уменьшается, а давление в ней и нагрузка на штоке возрастают. Жидкость из нижней полости штока перетекает в верхнюю полость цилиндра через кольцевую щель между иглой и плунжером, испытывая при этом большое сопротивление. Далее жидкость через отверстия в буксе 5 проходит в кольцевую полость между штоком и цилиндром. Кольцевой клапан 6 при этом опускается вниз и открывает свободный проход для жидкости. Приложенная к штоку сила Р на прямом ходе затрачивается на сжатие газа Рг, преодоление сил сопротивления перетеканию жидкости Рж, сил трения в буксах и уплотнениях Рт и сил инерции Рин движущихся со штоком элементов.

Рп.х. = Рг + Рж + Рт + Рин.

Работа сил инерции невелика и ими можно пренебречь.

На рисунке показан характер изменения перечисленных сил в зависимости от перемещения штока d при обжатии амортизатора.

Давление газа и сила Рг определяются политропой с показателем к = 1,1 - 1, 2. Рго - сила, создаваемая давлением начальной зарядки амортизатора. Сила сопротивления перетеканию жидкости прямо пропорциональна квадрату отношения скорости штока к площади проходных отверстий для жидкости.

Заштрихованные на этом рисунке площади показывают величины энергии, поглощенной каждой из перечисленных сил.

Полная работа, поглощенная амортизатором, равна сумме А = Аг + Аж + Ат.

Ее можно выразить через максимальные усилие Рmax и перемещение штока dmax

Работа сил трения и жидкости превращается в теплоту и рассеивается, а работа, затраченная на сжатие газа, аккумулируется и возвращается самолету на обратном ходе. При обратном ходе штока, который происходит с меньшей скоростью, жидкость перетекает в обратном направлении. Кольцевой клапан поднимается жидкостью вверх и резко уменьшает площадь проходных отверстий в буксе 5 , что обеспечивает рассеивание энергии на обратном ходе. Изменение усилия Рг на обратном ходе происходит по той же самой политропе, что и на прямом ходе. Силы трения и сопротивления жидкости вычитаются из усилий, создаваемых газом Р = Рг - Рж - Рт.

Работа сил трения и сопротивления жидкости и на обратном ходе переходит в тепловую и рассеивается.

На диаграмме работы амортизатора площадь между кривыми прямого и обратного хода показывает полную рассеянную амортизатором работу DА = А1 - А2 (петля гистерезиса). У современных амортизаторов полная рассеянная работа составляет 50 - 60 % от поглощенной на прямом ходе энергии А1.

Полная поглащенная энергия удара при посадке Адеф. при опускании центра масс самолета на величину Нэ за счет деформаций амортизатора, пневматиков колес и конструкции определит максимальную нагрузку на колеса SРкэ.

При грубой посадке с повышенными вертикальными скоростями сопротивление жидкости резко возрастает, что приводит к увеличению расчетных нагрузок на амортизаторе - появлению пиковых перегрузок (f). Для устранения этого недостатка были разработаны двухкамерные жидкостно-газовые амортизаторы.

Двухкамерный жидкостно-газовый амортизатор.

Параметры амортизатора определяются исходя из расчетной вертикальной скорости Vy и соответствующей ей энергии удара при посадке. Однако большая часть посадок, выполняемых опытными летчиками, происходит со скоростями Vy, значительно меньшими расчетной. В этом случае желательно иметь более мягкий амортизатор, который обеспечит меньшие нагрузки при посадке. С этой целью желательно снижать давление начальной зарядки амортизатора ро. Обычно оно соответствует усилию, равному 0,5 - 0,6 от стояночной нагрузки. Дальнейшее уменьшение ро снижает запас энергоемкости амортизатора на разбеге, когда нагрузка на колеса максимальна и мягкий
амортизатор будет сильно обжат. Компромиссное решение можно получить, используя двухкамерный амортизатор.

В таком амортизаторе создается две газовых камеры, заряженных разными начальными давлениями - камера низкого (Н) и камера высокого (В) давления. В начальный момент обжатия амортизатора в работу вступает камера низкого давления, а когда в ней давление станет равным давлению зарядки второй камеры, начинают работать обе камеры совместно. За счет увеличения общего объема сжимаемого газа политропа обжатия становится более пологой. В двухкамерном амортизаторе давление зарядки в первой камере (Н) можно снизить до 0,1 - 0,15 от стояночной нагрузки и получить очень мягкий амортизатор при посадке. Если стояночную нагрузку на разбеге выбрать близкой к нагрузке в точке перелома политропы, то за счет ее малого наклона за точкой перелома можно получить достаточный запас энергоемкости амортизатора на разбеге и пробеге для поглощения ударных нагрузок при наезде на неровности, особенно на большой скорости в конце разбега.

Диаграммы работы двухкамерного амортизатора показаны на рисунках, на которых сохранены те же обозначения, что и в предыдущем разделе. На этих диаграммах Рст.взл - обозначена стояночная нагрузка на амортизатор при взлетной массе самолета.

Амортизаторы с разгрузочным клапаном.

Жидкостно-газовый амортизатор за счет использования на прямом ходе сопротивления жидкости имеет достаточно высокий (до 0.8 - 0.85) коэффициент полноты диаграммы работы, что обеспечивает его высокую энергоемкость при небольшом ходе штока. Эта энергоемкость нужна только при посадке самолета в момент его первого удара о землю. Все остальные режимы движения самолета по земле - пробег, разбег, маневрирование при рулежке - не требуют высокой энергоемкости амортизатора. На этих режимах амортизатор поглощает энергию ударных нагрузок при наезде колесами на неровности аэродрома. Энергия этих ударов невелика, но они сопровождаются резкими, с большой скоростью перемещениями штока амортизатора, что при высоком коэффициенте полноты диаграммы работы и при больших скоростях движения самолета приводит к большим пиковым нагрузкам, передаваемым на шасси и самолет. Для снижения этих нагрузок желательно иметь мягкий, пусть даже с меньшей энергоемкостью и с меньшим коэффициентом полноты диаграммы работы, амортизатор. Этого можно добиться уменьшением или даже полным устранением сопротивления жидкости при работе амортизатора на указанных выше режимах движения самолета. Такое превращение жесткого жидкостно-газового амортизатора в мягкий чисто газовый обеспечивается включением в его конструкцию специального разгрузочного клапана, который при первом ударе самолета о землю уменьшает площадь проходных отверстий для жидкости, а при движении самолета по земле при стояночном обжатии амортизатора клапан открывает дополнительные каналы перетекания жидкости, что превращает амортизатор в газовый. Уменьшение ударных пиковых нагрузок при движении самолета, особенно на разбеге и пробеге, благоприятно сказывается на ресурсе шасси и других агрегатов самолета.

Схема уборки и выпуска опор шасси на примере шасси самолета Ан-26.

Уборка и выпуск опоры шасси осуществляется силовыми цилиндрами. При уборке основной опоры шасси жидкость из гидросистемы поступает параллельно в верхнюю полость силового цилиндра и гидроцилиндр замка-распора. Обратная стрела прогиба при этом выбирается, распор в дальнейшем не препятствует складыванию подкоса и уборки амортстойки. Силовой цилиндр убирает амортстойку, поворачивая ее до постановки ее на замок убранного положения.

В ходе уборки амортстойки при помощи механизма, кинематически связанного с ней, происходит открытие, а затем закрытие передних створок отсека опоры. Створки полностью открываются при угле поворота амортстойки 35°, а начинают закрываться за 6° до полностью убранного положения стойки. В закрытом положении створки запираются механическим замком, управление которым осуществляется от замка убранного положения амортстойки.

При выпуске основной опоры шасси жидкость из гидросистемы поступает сначала в гидроцилиндр замка убранного положения амортстойки, открывая его и связанный с ним замок створок. Только после открытия этих замков жидкость поступает в нижнюю полость силового цилиндра, который за счет демпфирующего устройства обеспечивает безударное окончание выпуска амортстойки. В конце выпуска звенья распора под действием своих пружин устанавливаются на механический упор, образуя обратную стрелу прогиба, тем самым, фиксируя опору в выпущенном положении.

Открытие и закрытие передних створок отсека при выпуске амортстойки происходит также как и при уборке, но в закрытом положении створки замком не запираются.

При уборке передней опоры шасси жидкость из гидросистемы одновременно поступает в гидроцилиндр замка выпущенного положения и в гидроцилиндр уборки-выпуска передней опоры. Замок открывается, амортстойка начинает убираться, одновременно приводится в действие центрирующее устройство и механизм управления передними и средними створками, которые открываются на угол 85° и пропускают переднюю амортстойку в отсек шасси. В конце уборки закрывается замок убранного положения и одновременно происходит закрытие всех створок отсека передней опоры.

При выпуске передней опоры шасси работа механизмов осуществляется в обратном порядке. В ходе выпуска замок выпущенного положения закрывается, одновременно закрываются передние и средние створки.

Просмотров