Подвижные детали кшм. Кривошипно-шатунный механизм: назначение и устройство, обслуживание и ремонт Назначение и общее устройство кривошипно шатунного механизма

Поршень (рис. 4) воспринимает давление газов и передает его через поршневой палец и шатун на коленчатый вал. В двухтактных двигателях наряду с этим поршень выполняет роль золотника механизма газораспределения.

Поршни работают в весьма тяжелых условиях: они испытывают воздействие горячих газов и воспринимают большие динамические нагрузки. Например, в начале рабочего хода на днище поршня диаметром 100 мм действует сила 20…40 кН у карбюраторного двигателя и 6…100 кН – у дизельного. Поршень движется в цилиндре с высокой (до 2 м/с) переменной скоростью, вследствие чего в шатунно-поршневых комплектах возникают значительные (до 15…20 кН) знакопеременные силы инерции (с частотой изменения знака до 200 Гц).

Рисунок. 4. Поршень двигателя ЗИЛ-130: а – общий вид; б – поршневые кольца; в – размещение колец в поршне: 1– ребро поршня; 2 – канавки для поршневых колец; 3 – бобышки; 4 – днище поршня; 5 – головка поршня; 6 – юбка поршня; 7 – компрессионные кольца; 8 – нижнее коническое компрессионное кольцо; 9, 10, 11, 12 – маслосъемные кольца с расширителями; 13 – чугунная всатвка

Применение поршней из алюминиевых сплавов дает возможность снизить конструкционную массу и, следовательно, силы инерции на 20…30% по сравнению с чугунными. Наряду с этим поршни из алюминиевого сплава имеют и недостатки: меньшую механическую прочность, повышенный износ, больший коэффициент линейного расширения (в 2…2,5 раза).

Поскольку поршень непосредственно охлаждаться не может, он нагревается значительно сильнее, чем охлаждаемая гильза. Чтобы предотвратить заклинивание поршня в гильзе, необходимо иметь между ними определенный зазор, когда они находятся в холодном состоянии. Этот зазор уменьшается при прогреве двигателя.

В настоящее время с целью уменьшения коэффициента линейного расширения и повышения прочности применяют поршни, изготовленные из высококремнистого алюминиевого сплава (содержание кремния до 22%, как например, у семейства двигателей ЯМЗ).

Для предотвращения заклинивания поршня его устанавливают в цилиндр с зазором. Поскольку днище и головка поршня нагреваются интенсивнее, чем юбка, зазор между цилиндром и головкой делают большим.

Конструкция и размеры поршня определяются главным образом величиной и скоростью нарастания давления газов и быстроходностью двигателя. Поршни дизелей имеют более массивную и жесткую конструкцию, большее число поршневых колец.

На долговечность поршня и бесшумность его работы большое влияние оказывает размещение оси поршневого пальца. С целью обеспечения одинаковых условий работы поршня при различных направлениях его движения ось поршневого пальца несколько смещают вниз и располагают на высоте 0,64…0,68 рабочей высоты юбки. Чтобы избежать стуков при переходе через мертвые точки, ось поршневого пальца смещают на 1,4…1,6 мм от оси поршня в сторону действия боковой силы при рабочем ходе (противоположную направлению вращения).

Поршневой палец служит для шарнирного соединения поршня с шатуном. Для уменьшения массы и снижения сил инерции его делают пустотелым. Поршневой палец работает под воздействием ударных нагрузок, переменных по величине и направлению, подвергается изгибу и истиранию. Чтобы противостоять этим нагрузкам, поршневой палец должен иметь мягкую сердцевину и, твердую поверхность. Этим требованиям удовлетворяют поршневые пальцы, изготовленные из углеродистой или малолегированной стали. Их подвергают термической обработке – цементации на глубину 0,5…1,0 мм, с последующей поверхностной закалкой токами высокой частоты на глубину 1,0…1,5 мм. Наружную поверхность пальца шлифуют и полируют.

Подавляющее распространение на современных двигателях получили плавающие поршневые пальцы, которые могут проворачиваться как в верхней головке шатуна, так и в бобышках поршня. Такая конструкция обеспечивает более равномерный износ сопряжения. Осевая фиксация поршневого пальца осуществляется стопорными пружинными кольцами, устанавливаемыми в бобышках поршня.

Поршневые компрессионные кольца служат для герметизации надпоршневого пространства и предотвращают прорыв газов в картер двигателя. Поршневое кольцо представляет собой криволинейный брус, имеющий в свободном состоянии вырез. При установке в цилиндр кольцо сжимается и благодаря своей упругости прижимается наружной поверхностью к зеркалу цилиндра. Уплотняющее действие поршневых колец тем лучше, чем больше их число. В карбюраторных двигателях устанавливают на поршне 2 - 3 компрессионных кольца, в дизельных – 3 - 4.

Поршневые кольца современных быстроходных двигателей работают в чрезвычайно тяжелых условиях, под воздействием высоких давлений и температур, сил инерции и трения. В наиболее тяжелых условиях работает верхнее компрессионное кольцо.

Самым распространенным материалом для изготовления поршневых компрессионных колец является легированный чугун. Чугунные поршневые кольца получают из индивидуально отлитых заготовок. Однако качество литых чугунных колец не полностью удовлетворяет современным требованиям.

В настоящее время часто применяют стальные кольца. Более перспективными являются кольца из металлокерамических материалов, обладающие большей износостойкостью. Такие кольца получают прессованием порошкообразной смеси железа, меди и графита под большим давлением и при высокой температуре.

В процессе работы двигателя компрессионные кольца попеременно прижимаются к верхней и нижней кромкам канавок поршня и действуют как насос, стремясь перекачивать масло со стенок цилиндра в камеру сгорания. Поэтому на поршнях устанавливают, кроме компрессионных, маслосъемные кольца . Они снимают масло со стенок цилиндра, направляя его обратно в картер двигателя. Длительное время маслосъемные кольца изготовлялись из чугуна. В настоящее время широкое распространение получили стальные составные маслосъемные кольца. Обладая гибкостью, относительной подвижностью элементов и высоким давлением на стенки цилиндра, стальное кольцо хорошо приспосабливается к поверхности цилиндра, имеющего искаженную форму (вследствие износа) и обеспечивает хорошее распределение масла по поверхности цилиндра как в новом, так и в изношенном двигателе. Переход с чугунных маслосъемных колец на стальные позволил уменьшить расход смазочного масла в 2 раза, а пробег двигателя до замены колец увеличить до 150000 км.

Шатун обеспечивает шарнирную связь прямолинейно движущегося поршня с вращающимся коленчатым валом. Он передает от поршня коленчатому валу силу давления газов при рабочем ходе. Шатун совершает сложное плоскопараллельное движение: возвратно-поступательное вдоль оси цилиндра и качательное относительно оси поршневого пальца. Шатун испытывает значительные знакопеременные нагрузки, действующие по его продольной оси. Во время рабочего хода сила давления газов сжимает шатун. Силы инерции стремятся оторвать поршень от коленчатого вала и растягивают шатун. Наряду с этим качательное движение вызывает знакопеременные силы инерции, изгибающие шатун в плоскости его качания.

Указанные условия работы предъявляют к конструкции шатуна следующие требования: высокая жесткость; достаточная усталостная прочность; небольшая масса; простота и технологичность. Габаритные размеры нижней головки шатуна не должны препятствовать его проходу через цилиндр при сборке двигателя.

Основными элементами шатуна являются верхняя (неразъемная) и нижняя (разъемная) головки и соединяющий их стержень. Наилучшей формой поперечного сечения стержня шатуна, обеспечивающей ему высокую жесткость при минимальной массе, является двутавр.

В верхнюю головку шатуна устанавливаются бронзовые втулки, обладающие высокой износостойкостью и сопротивляемостью усталостным разрушениям.

В нижнюю головку шатуна устанавливаются тонкостенные шатунные вкладыши, которые выполняются подобно вкладышам коренных подшипников, с тем же материалом антифрикционного слоя.

Шатуны для карбюраторных двигателей изготовляют из углеродистой или легированной стали. В дизельных двигателях шатуны работают при больших динамических нагрузках, поэтому для их изготовления требуются высоколегированная сталь и увеличенные сечения элементов (утяжеление конструкции).

Коленчатый вал (рис. 5) воспринимает усилия от шатунов и преобразует их в крутящийся момент. Коленчатый вал является наиболее напряженной деталью КШМ. Он подвергается растяжению, сжатию, изгибу, скручиванию, срезу, поверхностному трению, продольным и поперечным деформациям. При этом нагрузки носят динамический характер и достигают значительных величин.

При большой длине вала эти нагрузки могут вызвать заметные продольные и угловые деформации и привести к усталостным разрушениям.

Исходя из условий работы, характера и величены нагрузок, коленчатый вал должен удовлетворять следующим требованиям: обладать статической и динамической уравновешенностью; быть достаточно жестким и долговечным при небольшой массе; иметь высокую усталостную прочность; быть устойчивым против вибрации и крутильных колебаний; иметь точные размеры и высокую износостойкость трущихся поверхностей (коренных и шатунных шеек).

Коленчатые валы изготовляют ковкой или штамповкой из углеродистой или низколегированной стали. В последние годы получают распространение литые валы из магниевого чугуна. Они имеют меньшую массу и дешевле, чем кованые.

Валы подвергают термической обработке – закалке и отпуску. Шейки коленчатого вала закаливают токами высокой частоты на глубину 3…4 мм, шлифуют и полируют.

Рисунок 5. Подвижные детали кривошипно-шатунного механизма: 1 – храповик; 2 – фиксаторные шайбы; 3, 13 – шатунные шейки; 4 – вкладыши шатунных шеек; 5 – пружинное кольцо; 6 – поршневой палец; 7 – верхняя головка шатуна; 8 – стержень шатуна; 9 – болты; 10 – нижняя головка шатуна; 11 – крышка шатуна; 12, 19, 24, 29 – коренные шейки коленчатого вала;

14, 26 – вкладыши коренных шеек; 15, 16 – поршни; 17, 28 – противовесы; 18 – маховик; 20 – задняя часть вала; 21 – стопорное кольцо; 22, 27, 30 – крышки; 23 – масляная полость; 31 – шестерня привода ГРМ; 32 – передняя часть вала; 33 – шкив ременной передачи

Коленчатый вал имеет коренные и шатунные шейки, соединенные друг с другом при помощи щек. Коренные шейки выполняются одинаковыми по диаметру. Шатунная шейка со смежными щеками составляет колено, кривошип вала. Все шатунные шейки по длине и диаметру одинаковы.

В автотракторных двигателях коленчатые валы могут вращаться в подшипниках качения и скольжения. Подшипники качения обеспечивают уменьшение потерь на трение, что обеспечивает значительное облегчение запуска двигателя в холодное время. Однако в многоцилиндровых двигателях конструкция блока цилиндров и коленчатого вала с подшипниками качения значительно усложняется. Имеются и другие недостатки. Поэтому чаще всего используются подшипники скольжения. Коренные подшипники скольжения выполняют в виде тонкостенных стальных вкладышей (полуколец), которые устанавливают в расточках блока цилиндров. На внутреннюю поверхность вкладыша наносится слой из антифрикционного сплава, состав и свойства которого зависят от степени нагруженности.

В карбюраторных двигателях длительное время использовались свинцовооловянистые сплавы (баббиты). Широкое распространение получил сплав СОС–6–6 на свинцовой основе, содержащей 6% олова, 6% сурьмы, 0,5% меди. Однако свинцовооловянистые сплавы чувствительны к повышению температуры и, имеют недостаточную сопротивляемость уста-лостным выкрашиваниям.

В связи с этим в настоящее время получили широкое применение сталеалюминиевые вкладыши, обладающие высокой усталостной прочностью и хорошими противокоррозийными качествами. Сталеалюминиевые вкладыши широко применяются на современных V-образных карбюраторных двигателях и обеспечивают им достаточно высокий межремонтный срок службы.

В дизельных двигателях, имеющих повышенную нагрузку на подшипники, применяются стальные вкладыши с антифрикционным сплавом из свинцовистой бронзы, содержащей 30% свинца, улучшающего противозадирные свойства. Подшипники из свинцовистой бронзы выдерживают без усталостных разрушений почти вдвое большую нагрузку, чем баббиты и стабильно работают при нагреве до 140…150°С, в то время как для баббитов предельно допустимой является температура 120°С.

Вместе с тем антифрикционный сплав из свинцовистой бронзы плохо поглащает твердые абразивные частицы, недостаточно хорошо прирабатывается, имеет склонность к коррозии. Поэтому в двигателях с подшипниками из свинцовистой бронзы можно применять только специальное масло с противокоррозийной присадкой.

Маховик устанавливают на задний конец коленчатого вала для уменьшения неравномерности работы двигателя и выведения поршней из мертвых точек.

В многоцилиндровых двигателях рабочие ходы протекают с частичным перекрытием, что обеспечивает хорошую равномерность и позволяет кривошипному механизму проходить мертвые точки без помощи маховика. В этих случаях маховик обеспечивает плавную работу двигателя на малой частоте вращения, облегчает трогание машины и способствует пуску двигателя.

Маховик отливают из серого чугуна и крепят к фланцу коленчатого вала. На обод маховика напрессовывают стальной зубчатый венец, служащий для пуска двигателя от стартера.

На торцевой поверхности маховика наносят метки, соответствующие ВМТ и моменту зажигания. Этими метками пользуются при установке зажигания или впрыска, а также при проведении различных регулировок. В сборе с коленчатым валом маховик должен быть динамически сбалансирован.

При работе двигателя на детали КШМ действуют давление газов на поршень, силы инерции масс, движущихся возвратно-поступательно (поршень и часть массы шатуна) и вращающихся (колено вала и часть массы шатуна), силы веса. По мере вращения вала эти силы, за исключением силы веса, меняют величину и направление.

Кривошипно-шатунный механизм (КШМ) служит для преобразования прямолинейного возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

КШМ состоит из неподвижных и подвижных деталей. Группу неподвижных деталей составляют блок цилиндров, головки цилиндров, гильзы, вкладыши, крышки коренных подшипников.

В группу подвижных деталей входят поршни, поршневые кольца, поршневые пальцы, шатуны, коленчатый вал с маховиком.

Неподвижные детали кшм

Блок цилиндров является базовой деталью (остовом) двигателя (рис. 3). На нем устанавливаются все основные механизмы и системы двигателя.

Рисунок 3. Неподвижные детали кривошипно-шатунного механизма: 1 – крышка блока зубчатых колес ГРМ; 2 – сталеасбестовая прокладка; 2 – головка блока цилиндров; 4, 10 – входные отверстия водяной рубашки; 5, 9 – выходные отверстия водяной рубашки; 6, 8 – каналы для подачи горючей смеси; 11 – седло клапана; 12 – гильза; 13 – шпильки крепления; 14 –верхняя часть; 15 – блок цилиндров; 16 – гнезда гильз

В автотракторных многоцилиндровых двигателях с жидкостным охлаждением все цилиндры выполняются в виде общей отливки, которая и называется блоком цилиндров. Такая конструкция обладает наиболее высокой жесткостью и хорошей технологичностью. С раздельными цилиндрами в настоящее время выполняются только двигатели воздушного охлаждения.

Блок цилиндров работает в условиях значительного до 2000 °С и неравномерного нагрева и давления (9,0…10,0 МПа). Чтобы противостоять действию значительных силовых и температурных нагрузок, блок цилиндров должен обладать высокой жесткостью, обеспечивающей минимальные деформации всех его элементов, гарантировать герметичность всех полостей (цилиндры, рубашка охлаждения, каналы и т. д.), иметь высокий срок службы, простую и технологичную конструкцию.

Для изготовления блока цилиндров применяют серый чугун или алюминиевые сплавы. Наиболее предпочтительным материалом для изготовления блока цилиндров в настоящее время является чугун, т.к. он дешев, обладает большой прочностью и мало поддается температурным деформациям.

В конце шестидесятых годов отечественная промышленность освоила литье чугунных блоков с толщиной стенок 2,5…3,5 мм. Такие блоки характеризуются высокой прочностью, жесткостью и стабильностью размеров, почти не уступают алюминиевым по массе.

Существенным недостатком блоков из алюминиевых сплавов является их повышенное тепловое расширение и относительно невысокие механические качества.

Расположение цилиндров может быть однорядным (вертикальным или наклонным), двухрядным или V-образным, с углом развала между цилиндрами 60°, 75°, 90°. Двигатели с углом развала 180° называются оппозитными. V-образная компоновка в 80-е годы XX века получила широкое распространение, так как обеспечивает большую компактность и меньшую удельную массу двигателя. Жесткость коленвала и его опор в этом случае повышается, что способствует увеличению срока службы двигателя. Меньшая длина двигателя облегчает компоновку его на машине и при одинаковой колесной базе позволяет получить большую полезную площадь грузовой платформы.

На двигателях с однорядным расположением цилиндров их номеруют, начиная с переднего. На V-образных двигателях номера присваивают вначале правому ряду цилиндров, начиная с переднего, а затем маркируют левый ряд.

Цилиндр в большинстве автотракторных двигателей выполняется в виде гильз, устанавливаемых в блок. Гильзы по способу установки делятся на сухие и мокрые.

Мокрые гильзы, омываемые снаружи охлаждающей жидкостью, обеспечивают лучший тепло отвод и более удобны при ремонте, т.к. могут быть легко заменены без использования специального инструмента и приспособлений.

Герметичность мокрой гильзы обеспечивают уплотнением нижней части резиновым кольцом и установкой медной прокладки под верхним буртиком. Применение мокрых гильз улучшает отвод от цилиндров избыточного тепла, однако снижает жесткость блока цилиндров.

Сухие гильзы используются преимущественно в двухтактных двигателях, где применение мокрых гильз затруднительно.

Гильза воспринимает высокое давление рабочих газов, имеющих значительную температуру. Поэтому гильзы изготовляют, как правило, из легированного чугуна, хорошо противостоящего эрозийному и абразивному износу и обладающего удовлетворительной коррозийной стойкостью. Внутренняя поверхность гильзы – зеркало цилиндра – тщательно обработана.

Поскольку условия работы верхней части гильзы наиболее тяжелые, а изнашивается она наиболее интенсивно, в современных двигателях равномерность износа цилиндров по высоте обеспечивается короткими вставками из противокоррозийного высоколегированного аустенитного чугуна (нирезиста). Использование такой вставки повышает срок службы гильз в 2,5 раза.

Головка цилиндров служит для размещения камер сгорания, впускных и выпускных клапанов, свечей зажигания или форсунок.

В процессе работы двигателя головка цилиндров подвергается воздействию высоких температур и давлений. Нагрев отдельных частей головки неравномерен, т.к. одни из них соприкасаются с продуктами сгорания, имеющими температуру до 2500° С, а другие омываются охлаждающей жидкостью.

Основные требования к конструкции головки цилиндров: - высокая жесткость, исключающая деформации от механических нагрузок и коробление при рабочих температурах; простота; технологичность конструкции и небольшая масса.

Головка цилиндров выполняется отливкой из чугуна или алюминиевого сплава. Выбор материала зависит от типа двигателя. В карбюраторных двигателях, где сжимается горючая смесь, предпочтение отдается более теплопроводным алюминиевым сплавам, т. к. это обеспечивает бездетонационную работу. В дизельных двигателях, где сжимается воздух, головка цилиндров из чугуна способствует повышению температуры стенок камер сгорания, что улучшает протекание рабочего процесса, особенно при запуске в холодное время.

Головки цилиндров могут выполняться индивидуальными или общими. Индивидуальные головки, как правило, применяют в двигателях воздушного охлаждения. В большинстве двигателей, имеющих жидкостное охлаждение, применяют общие головки для каждого ряда цилиндров. В некоторых случаях, при большой длине блока цилиндров, применяют головки для группы в два -три цилиндра (например, у двигателя ЯМЗ-240 и А=01 Л).

У двигателя ЯМЗ-740 головки цилиндров отдельные на каждый цилиндр. Применение отдельных головок повышает надежность двигателя, позволяет избежать перекоса головки при неравномерной затяжке ее и прорыва газов через прокладку.

У карбюраторных двигателей и у некоторых типов дизелей обычно камеры сгорания располагают в головках цилиндров. Форма и расположение камер сгорания, впускных и выпускных каналов являются важным конструктивным параметром, определяющим мощностные и экономические показатели двигателей.

Форма камеры сгорания должна обеспечивать наилучшие условия для наполнения цилиндра свежим зарядом, полное и бездетонационное сгорание смеси, а также хорошую очистку цилиндра от продуктов сгорания.

В настоящее время у дизелей предпочтение отдается камерам сгорания, расположенным в поршнях. Такие камеры имеют меньшую поверхность и, следовательно, небольшие тепловые потери. Двигатели с камерами сгорания в поршне обладают более высокими антидетонационными качествами и повышенным коэффициентом наполнения.

Технология изготовления головки цилиндров в двигателях с камерой сгорания в поршне не сложная. Камеру в поршне легко получить при отливке и последующей механической обработкой довести объем камеры до заданного с высокой точностью.

Длительная работа головки цилиндров без деформации и коробления обеспечивается рациональным охлаждением, т.е. более интенсивным отводом тепла от наиболее нагретых ее частей.

Двигатель - пожалуй, самый ответственный агрегат в автомобиле. Именно он вырабатывает крутящий момент для дальнейшего движения машины. В основе конструкции ДВС лежит кривошипно-шатунный механизм. Назначение и устройство его будет рассмотрено в нашей сегодняшней статье.

Конструкция

Итак, что это за элемент в двигателе?

Данный механизм воспринимает энергию давления газов и преобразует его в механическую работу. КШМ двигателя внутреннего сгорания объединяет в себе несколько составляющих, а именно:

  • поршень;
  • шатун;
  • коленчатый вал со вкладышами;
  • кольца и втулки.

В совокупности они образуют цилиндро-поршневую группу. Каждая деталь кривошипно-шатунного механизма делает свою работу. При этом элементы взаимосвязаны между собой. Каждая деталь имеет свое устройство и назначение. Кривошипно-шатунный механизм должен выдерживать повышенные ударные и температурные нагрузки. Это обуславливает надежность силового агрегата в целом. Далее мы подробно расскажем о каждой из перечисленных выше составляющей.

Поршень

Данная деталь кривошипно-шатунного механизма воспринимает давление расширяющихся газов после воспламенения горючей смеси в камере. Поршень изготавливается из сплавов алюминия и осуществляет возвратно-поступательные движения в гильзе блока. Конструкция поршня объединяет в себя головку и юбку. Первая может иметь разную форму: вогнутую, плоскую или выпуклую.

На 16-клапанных двигателях ВАЗ зачастую используются поршни с выемками. Они служат для предотвращения столкновения головки поршня с клапанами в случае обрыва ремня ГРМ.

Кольца

Также в конструкции есть кольца:

  • маслосъемное;
  • компрессионные (две штуки).

Последние препятствуют утечкам газов в картер двигателя. А первые служат для удаления излишков масла, что остается на стенках цилиндра при осуществлении хода поршня. Чтобы поршень соединился с шатуном (о нем мы расскажем ниже), в его конструкции также предусмотрены бобышки.

Шатун

Работа кривошипно-шатунного механизма не обходится без этого элемента. Шатун передает толкательные усилия от поршня на коленвал. Данные и механизмов имеют Обычно шатуны изготавливаются путем ковки или штамповки. Но на спортивных двигателях используются титановые литые элементы. Они более устойчивы к нагрузкам и не деформируются в случае большого толчка.

Каково устройство и назначение кривошипно-шатунного механизма? Конструктивно шатун состоит из трех частей:

  • верхней головки;
  • стрежня;
  • нижней головки.

Вверху данный элемент соединяется с поршнем при помощи пальца. Вращение детали осуществляется в тех самых бобышках. Такой тип пальца называется плавающим. Стержень у шатуна имеет двутавровое сечение. Нижняя часть является разборной. Это нужно для того, чтобы производить его демонтаж с коленчатого вала в случае неисправностей. Нижняя головка соединяется с шейкой коленчатого вала. Устройство последнего мы рассмотрим прямо сейчас.

Коленчатый вал

Данный элемент является основной составляющей в устройстве кривошипно-шатунного механизма. Назначение его в следующем. воспринимает нагрузки от шатуна. Далее он преобразует их в крутящий момент, который впоследствии передается на коробку через механизм сцепления. На конце вала закреплен маховик. Именно он является заключительной частью в конструкции двигателя. Может быть одно- и двухмассовым. На конце имеет зубчатый венец. Он нужен для зацепления с шестерней стартера в случае запуска двигателя. Что касается самого вала, он изготавливается из высокопрочных сортов стали и чугуна. Элемент состоит из шатунных и коренных шеек, что соединяются «щеками». Последние вращаются во вкладышах (подшипники скольжения) и могут быть разъемными. Внутри щек и шеек есть отверстия для подачи масла. Смазка проникает под давлением от 1 до 5 Бар, в зависимости от нагруженности ДВС.

Во время работы двигателя может возникать дисбаланс вала. Чтобы его предотвратить, в конструкции предусмотрен гаситель крутильных колебаний. Он являет собой два металлических кольца, что соединяются через упругую среду (моторное масло). На внешнем кольце гасителя имеется ременной шкив.

Типы ЦПГ

На данный момент существует несколько разновидностей цилиндропоршневой группы. Наиболее популярная - рядная конструкция. Она применяется на всех 4-цилиндровых двигателях. Также есть рядные «шестерки» и даже «восьмерки». Данная конструкция предполагает размещение оси цилиндров в одной плоскости. отличаются высокой сбалансированностью и малой вибрацией.

Существует также и V-образная конструкция, которая пошла от американцев. Схема кривошипно-шатунного механизма V-8 представлена ниже на фото.

Как видите, здесь цилиндры располагаются в двух плоскостях. Обычно они находятся под углом от 75 до 90 градусов относительно друг друга. Благодаря такой конструкции, можно существенно сэкономить место в подкапотном пространстве. Примером могут послужить 6-цилиндровые моторы от «Опель» С25ХЕ. Этот V-образный двигатель без проблем размещается под капотом поперечно. Если взять рядную «шестерку» от переднеприводного «Вольво», она будет заметно скрадывать место под капотом.

Но за компактность приходится платить меньшей виброустойчивостью. Еще одна схема размещения цилиндров - оппозитная. Практикуется на японских автомобилях «Субару». Оси цилиндров размещены тоже в двух плоскостях. Но в отличие от V-образной конструкции, здесь они находятся под углом 180 градусов. Основные плюсы - низкий центр тяжести и отличная балансировка. Но такие двигатели очень дорогие в производстве.

Ремонт и обслуживание кривошипно-шатунного механизма

Обслуживание любого КШП предполагает лишь регулярную замену масла в двигателе. В случае ремонта уделяется внимание следующим элементам:

  • Кольцам поршней . При залегании они меняются на новые.
  • Вкладышам коленчатого вала . При существенной выработке или проворачивании подшипника скольжения - замена на новый.
  • Поршневым пальцам . Они тоже имеют выработку.
  • Самим поршням . При детонации возможен прогар головки, что влечет за собой снижение компрессии, троение, жор масла и прочие неполадки с двигателем.

Зачастую подобные неисправности возникают при несвоевременной замене масла и фильтра, а также при использовании низкооктанового бензина. Также ремонт КШМ может понадобится при постоянных нагрузках и при высоком пробеге. Детали машин и механизмов обычно имеют высокий запас прочности. Но есть случаи, когда уже на 120 тысячах километров, прогорали клапаны и поршни. Все это является следствием несвоевременного обслуживания силового агрегата.

Итак, мы выяснили, что являет собой кривошипно-шатунный механизм, из каких элементов он состоит.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм воспринимает давление газов при такте сгорание - расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Кривошипно-шатунный. Механизм состоит из блока цилиндров с картером, головки цилиндров, поршней с кольцами, поршневых пальцев, шатунов, коленчатого вала, маховика и поддона картера.

Рис. 2.12. Кривошипно-шатунный механизм двигателя СМД-14БН:

Венец маховика; 2 - пальцы ведущие; 3 - маховик; 4 - поршень; 5 - палец; 6 - кольцо стопорное; 7 - шатун; 8, 12 - соответственно верхний и нижний вкладыши шатуна; 9 - коленчатый вал; 10 - блок шестерен; 11 - крышка шатуна; 13 - винт.

кривошипный механизм коленчатый ремонт

Кривошипно-шатунный механизм состоит из следующих деталей: поршней с кольцами и пальцами, шатунов, коленчатого вала и маховика. Поршни размещены в цилиндрах, которые установлены в блок-картере, закрытым сверху головкой цилиндров.

Блок-картер является главной корпусной деталью двигателя, которую выполняют в виде общей отливки из чугуна. Верхнюю часть, где расположены все цилиндры, называют блоком цилиндров, а нижнюю уширенную часть, где расположен коленчатый вал, называют картером. Внутри картера имеются перегородки, которые придают ему жесткость, а также служат опорами для коленчатого вала. Нижние части перегородок, передняя и задняя пенки блок-картера имеют специальные приливы, которые совместно с крышками образуют постели для вкладышей коренных Подшипников коленчатого вала. Крышки коренных подшипников надежно закреплены в картере.

К передней обработанной стенке блок-картера прикреплен картер распределительных шестерен с крышкой, а к задней стенке - картер маховика. К нижней части блок-картера крепится при помощи болтов стальной штампованный поддон, служащий емкостью для масла.

В вертикальных цилиндрических расточках блок-картера установлены гильзы цилиндров, выполненные из высокопрочного чугуна. Пространство между стенками блока цилиндров и наружными стенками цилиндров заполняют охлаждающей жидкостью. Для исключения ее проникновения в картер гильзы в нижней части уплотнены резиновыми кольцами, которые размещены в специальных канавках.

Гильзы, омываемые охлаждающей жидкостью, называют мокрыми. Кроме резиновых колец герметичность посадки мокрых гильз в верхней части обеспечивается за счет плотной посадки специально обработанного буртика и пояска гильзы. Иногда под буртик гильзы устанавливают уплотнительное кольцо из мягкого металла.

Верхний торец гильзы несколько выступает над плоскостью блока цилиндров, что при затяжке головки цилиндров обеспечивает надежную фиксацию гильзы в гнезде и тщательное уплотнение стыка.

В верхней плите блока, кроме расточек для гильз цилиндров, выполнены:

специальные каналы для прохода охлаждающей жидкости из блока цилиндров в головку цилиндров;

канал для подвода масла к клапанному механизму;

отверстия для штанг толкателей;

отверстия с резьбой для шпилек крепления головки цилиндров к блоку цилиндров.

Цилиндры двигателя ЯМЗ-2Э8НБ расположены в два ряда под углом 90°, правый ряд смещен относительно левого на 35 мм. Каждый ряд цилиндров имеет отдельную головку.

Двигатель трактора ТДТ-55А имеет одну головку цилиндров, а двигатель трактора ТТ-4 - две. Сверху головки цилиндров закрыты колпаками из алюминиевого сплава. Головки цилиндров и блок - картера обоих двигателей имеют аналогичное устройство.

Стык головки цилиндров и блока цилиндров уплотняется специальной прокладкой, которая обеспечивает надежную герметичность соединения головки с блоком, препятствуя прорыву газов из цилиндров и протеканию охлаждающей жидкости из рубашки для охлаждающей жидкости. Внутренняя полость головки является рубашкой для охлаждающей жидкости, которая через отверстия, расположенные в нижней полости головки и на прокладке, сообщается с рубашкой для охлаждающей жидкости блока цилиндров.

В головке цилиндров имеются отверстия для установки форсунок для подачи топлива в камеру сгорания. Каждую форсунку дизельного двигателя трактора ТДТ-55А крепят двумя шпильками, а двигателей тракторов ТТ-4 и К-703 - специальным болтом с гайкой и скобой. Сверху на головке цилиндров расположены клапанный и декомпрессионный механизмы управления клапанами.

Головку цилиндров тракторных двигателей отливают из чугуна. В головке карбюраторных двигателей имеются отверстия для установки свечей зажигания. В головке пускового двигателя П-10УД имеется отверстие, перекрываемое крышкой, для продувки цилиндра при пуске или заливки в него топлива. Крепят головки цилиндров к блоку цилиндров шпильками и гайками, которые затягивают в определенной последовательности и с определенным моментом.

У всех рассматриваемых дизельных двигателей тракторов камера сгорания образуется соответствующими углублениями в поршне и верхними плоскостями головок цилиндров. Цилиндры вместе с камерами сгорания, поршнем и головкой цилиндров образуют объемы, в которых протекают все рабочие процессы рабочего цикла двигателя. Внутренние стенки гильз цилиндров, называемые зеркалом цилиндра, обеспечивают направление движения поршней.

Поршневая группа и шатун

Поршень с уплотнительными кольцами, пальцем и деталями крепления составляет поршневую группу. Поршень с уплотнительными кольцами обеспечивает герметичность переменного объема, в котором протекает рабочий процесс двигателя, а также воспринимает давление газов и передает возникающее усилие через палец и шатун коленчатому валу. При помощи поршня также осуществляется заполнение цилиндра горючей смесью или воздухом, сжатие ее и удаление из цилиндра отработавших газов. Кроме того, у двухтактных двигателей поршень открывает окна впускного, выпускного и перепускного каналов. Поршень работает в условиях больших давлений, высоких температур и быстро меняющихся скоростей движения.

Поршень состоит из верхней уплотняющей части (головки) и нижней направляющей части (юбки). Головка поршня имеет днище, воспринимающее давление газов, и боковую поверхность с проточенными на ней канавками для поршневых колец: на нижней части поршней дизельных двигателей протачивают канавки для размещения в них маслосъемных колец; на поршнях карбюраторных двигателей канавки для колец в нижней части не делают.

Для лучшего отвода теплоты и увеличения прочности поршня днище с внутренней стороны имеет ребра жесткости. Снаружи днище может быть плоским, вогнутым, выпуклым, фасонным.

В дизельных двигателях широко применяют фасонные днища, форма которых зависит от способа смесеобразования в дизеле, расположения клапанов и форсунок, а поверхность образует камеру сгорания. Поршни двигателей трелевочных тракторов имеют вогнутые фасонные камеры сгорания.

На уплотнительной части головки поршней дизелей тракторов ТДТ-55А, ТТ-4 и К-703 выполнены четыре кольцевые канавки: три верхние - для компрессионных колец и одна - для маслосъемного. На юбке поршня выполнена пятая канавка под нижнее маслосъемное кольцо. В канавках под маслосъемные кольца просверлены отверстия для отвода масла, снимаемого кольцами со стенок цилиндра, в поддон картера.

Боковая поверхность поршня имеет сложную конусовидно-эллиптическую форму, а диаметр его меньше диаметра цилиндра, причем у головки поршня диаметр меньше, чем у юбки, а большая ось эллипса перпендикулярна оси поршневого кольца. Все это позволяет при нагреве и расширении поршня обеспечивать между стенками цилиндра и поршнем зазор, который дает возможность поршню при нагревании свободно расширяться и перемещаться в цилиндре.

Юбка обеспечивает направление движения поршня в цилиндре и передает на его стенки боковые усилия. В верхней части юбка снабжена приливами-бобыщками, в которых выполнены отверстия для поршневого пальца, соединяющего поршень с шатуном. Ось пальца пересекается с осью поршня, но иногда она смещается от оси поршня. Это позволяет уменьшить нагрузку на поршень в момент перехода им ВМТ. Для улучшения приработки поршней к цилиндрам, уменьшения износа и предохранения их от задиров юбку поршня покрывают тонким слоем олова. Сам поршень отливается из специального алюминиевого сплава.

Поршневые кольца подразделяют на компрессионные и маслосъемные. Они предназначены для исключения прорыва газон между стенками цилиндра и поршня, попадания масла из картера в камеру сгорания, где, сгорая, масло образует нагар. Кольца участвуют в отводе тепла от поршня к цилиндру. В свободном состоянии наружный диаметр кольца больше диаметра цилиндра, поэтому после его установки кольцо плотно прилегает к стенкам цилиндра.

Для установки в канавки поршня кольца выполняют разрезными с зазором 0,2 - 0,5 мм. Разрезы поршневых колец называю замками, которые по форме бывают в основном прямыми, иногда косыми или ступенчатыми. На дизельных двигателях трелевочных тракторов применяют поршневые кольца с прямыми замками. При установке колец замки соседних колец смещают относительно друг друга по окружности приблизительно на угол 120°.

В процессе работы и износа у поршневых колец снижается упругость, и как следствие, ухудшается герметичность цилиндра. Для устранения этого в дизелях тракторов ТДТ-55А и ТТ-4 между поршневым маслосъемным кольцом и стенкой канавки поршня устанавливают стальное пружинящее кольцо - расширитель.

Поршневые кольца изготовляют из легированного чугуна отливкой с после дующей механической обработкой, а так же из стали. Высота колец меньше высоты канавки в поршне на 0,03 - 0,08 мм.

Материал для изготовления поршневых колец должен обладать хорошей упругостью и достаточной прочностью в условиях высоких температур, иметь высокую износоустойчивость, но не больше износоустойчивости зеркала цилиндра. Опорную поверхность одного или двух верхних компрессионных поршневых колец для уменьшения износа кольца и цилиндра покрывают слоем хрома толщиной до 0,16 - 0,20 мм с пористой поверхностью, хорошо удерживающей смазку. Для улучшения приработки рабочие поверхности нижних колец нередко покрывают слоем олова или другого легкоистираемого материала.

Поршневой палец служит для шарнирного соединения поршня с шатуном и изготовляется пустотелым из высококачественной износоустойчивой стали. Внутренняя его поверхность цилиндрическая или коническо-цилиндрическая.

Концы пальца размещают в отверстиях бобышек поршня, а середина проходит через отверстие в головке шатуна. Если пальцы свободно поворачиваются и в бобышках, и в головке шатуна, то они называются плавающими. Такое соединение имеет наибольшее распространение, поскольку при перемещении поршня с шатуном вся поверхность плавающего пальца является рабочей, что уменьшает износ и возможность заедания.

В некоторых двигателях палец может неподвижно закрепляться и головке шатуна и длина его меньше диаметра поршня. Для ограничения осевых перемещений пальца и исключения повреждений стенок цилиндра палец закрепляют стопорными кольцами, устанавливаемыми в канавки бобышек торцевыми заглушками, вставляемыми в бобышки и стопорным кольцом, размещенным в проточках пальца и верхней головки шатуна.

Смазку поршневого пальца осуществляют через сверления в стержне или прорези в верхней головке шатуна и масляные каналы в бобышках поршня.

Шатун состоит из верхней и нижней головки и соединяющего их стержня:

верхняя головка неразъемная и служит для установки поршневого пальца, шарнирно соединяющего поршень с шатуном. Для уменьшения трения и износа в нее запрессовывают одну или две бронзовые втулки;

нижняя головка у многих двигателей выполняется составной с прямым (90°) или косым (30 - 60°) относительно оси стержня шатуна разъемом. Плоскость разъема может быть гладкой или иметь шлицевой замок. Косой разъем облегчает пропуск поршня с шатуном через цилиндр, а также соединение шатуна с кривошипом коленчатого вала.

Съемная часть нижней головки шатуна - крышка. Она крепится к стержню двумя болтами, которые имеют гайки или ввертываются в тело шатуна и надежно стопорятся после затяжки.

В нижней головке шатуна установлены стальные тонкостенные вкладыши (верхний и нижний), с тонким слоем 0,1 - 0,9 мм анфрикционного сплава. Вкладыши шатунных подшипников в дизельных двигателях тракторов ТДТ-55А и ТТ-4 изготовляют из малоуглеродистой стали, покрытой специальными алюминиевыми сплавами, а в двигателях трактора К-703 - свинцовистой бронзой. Вкладыши выполняют функцию подшипника скольжения и удерживаются в шатуне и в крышке плотной посадкой и наличием у них усиков, входящих в соответствующие выточки в шатуне и крышке.

Стержень шатуна имеет обычно двутавровое сечение, расширяющееся к нижней головке, обтекаемую форму и плавные переходы к головкам. У некоторых шатунов в стержне выполняют канал для подвода под давлением масла к поршневому пальцу.

При работе двигателя на шатун действуют силы давления газов и силы инерции, которые сжимают, растягивают и изгибают шатун в продольном и поперечном направлениях. Поэтому его форма, конструкция и материал должны обеспечивать прочность, жесткость и легкость. Шатуны изготовляют из высококачественных углеродистых и легированных сталей штамповкой нагретых заготовок с последующей механической и термической обработкой.

Для обеспечения хорошей уравновешенности двигателя различие в массе отдельных шатунов и комплектов шатунно-поршневой группы должно быть минимальным. Для правильной сборки поршня с шатуном и установки их в двигатель на нижней головке шатуна и ее крышке выбивают порядковый номер цилиндра, для которого предназначен шатун, а также другие метки.

Коленчатый вал и маховик

Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, передавая его приводным системам и механизмам двигателя и трансмиссии трактора. В процессе работы коленчатый вал находится в очень сложном напряженном состоянии: на него действуют сжимающие и растягивающие усилия, инерционные и центробежные силы, скручивающие и изгибающие моменты. Коленчатый вал должен быть: прочным, жестким, износоустойчивым, статически и динамически уравновешенным, обтекаемым, не подвергаться резонансным и крутильным колебаниям, иметь небольшую массу.

Коленчатый вал состоит из коренных и шатунных шеек, соединенных щеками, фланца для крепления маховика и носка.

Шатунные шейки вала дизелей тракторов ТДТ-55А, ТТ-4 и К-703 имеют полости, закрытые резьбовыми пробками, в которых осуществляется дополнительная центробежная очистка масла перед поступлением в шатунные подшипники.

Коренные шейки служат для установки коленчатого вала в подшипниках, размещенных в картере двигателя. При помощи шатунных шеек вал соединяется с нижними головками шатунов. Шатунные и коренные шейки соединяют при помощи щек. Для разгрузки коренных подшипников от инерционных сил движущихся деталей шатунно-поршневой группы на щеках вала установлены противовесы, в сборе с которыми вал балансируется. Противовесы могут изготовляться заодно со щеками или в виде отдельных, надежно закрепленных деталей. Шатунная шейка вместе с прилегающими к ней щеками образует колено вала или кривошип.

Для избежания разрушения коленчатых валов в местах перехода щек к коренным и шатунным шейкам выполняют закругления - галтели. В коренных и шатунных шейках и в щеках просверлены каналы для подачи под давлением масла к шатунным подшипникам.

На передней части коленчатого вала крепятся: шестерня привода распределительного вала, шкив приводных ремней, маслоотражатель, сальник и храповик для проворачивания вала рукояткой. К хвостовику коленчатого вала болтами крепится маховик. На хвостовике вала имеется маслосъемная резьба и маслоотражательный буртик, а в торце имеется гнездо для установки переднего подшипника вала муфты сцепления.

Носик и хвостовик вала уплотняются резиновыми самоподжимными манжетами. Коленчатый вал вращается в коренных подшипниках, имеющих вкладыши из сталеалюминевой ленты.

Изготовляют коленчатые валы из углеродистых и легированных сталей штамповкой или литьем с последующей механической и термической обработкой. Для повышения износоустойчивости коренных и шатунных шеек их подвергают поверхностной закалке, а затем шлифуют и полируют.

Форма коленчатого вала зависит от числа и расположения цилиндров, тактности и порядка работы двигателя. Она должна обеспечивать равномерное чередование рабочих ходов в цилиндрах по углу поворота коленчатого вала, принятую последовательность работы цилиндров и уравновешенность двигателя.

Число шатунных шеек на коленчатом валу двигателя с однорядным расположением цилиндров равно числу цилиндров. У двигателей с V-образным расположением цилиндров число шатунных шеек равно половине числа цилиндров: у этих двигателей на каждой шейке рядом установлены головки двух шатунов. Число коренных шеек коленчатого вала у v-образных двигателей обычно на одну больше, чем у шатунных. Например, восьмицилиндровый дизельный двигатель ЯМЗ-2Э8НБ имеет пять коренных шеек, а коленчатый вал шестицилиндрового дизеля А-01МЛ - семь коренных шеек. Чем больше опор в виде коренных шеек имеет коленчатый вал, тем более жесткой и надежной получается конструкция двигателя, облегчается нагрузка на опорные подшипники, но при этом усложняется устройство вала и картера, увеличивается длина двигателя, возрастает стоимость изготовления и ремонта.

Вкладыши коренных подшипников устанавливают в постели блок-картера и крышки коренных подшипников, а фиксацию осуществляют таким же способом, как и шатунных.

При рабочем ходе в одноцилиндровом двигателе коленчатый вал с маховиком воспринимает усилие от поршня через шатун и раскручивается, накапливая энергию, которая затем, прежде всего, используется на выполнение остальных подготовительных тактов рабочего процесса. По мере увеличения в двигателе числа цилиндров и частоты рабочих тактов (у двухтактных двигателях) сокращается потребность в энергии маховика для выполнения подготовительных тактов. Поэтому размеры маховика и его масса у таких двигателей меньше.

При пуске двигателя маховик, получив энергию после рабочего хода в одном из цилиндров, обеспечивает за счет инерции вращение коленчатого вала, при этом в остальных цилиндрах создаются условия для протекания рабочих ходов, в результате чего двигатель начинает работать.

Маховик отливают из чугуна в виде диска. Для увеличения момента инерции маховика основную массу его металла располагают по ободу, т.е. на максимальном расстоянии от оси вращения маховика. На обод маховика напрессовывают стальной зубчатый венец, с которым при пуске двигателя входит в зацепление шестерня пускового устройства, и наносят метки для определения положения поршня в первом цилиндре и установки момента зажигания или момента подачи топлива.

В сборе с коленчатым валом маховик балансируется. Это выполняют для того, чтобы при их вращении не возникало вибрации и биения от центробежных сил и не происходил усиленный износ коренных подшипников двигателя. На заднем торце маховика монтируют сцепления.

При работе двигателя на коленчатый вал действуют осевые усилия от работы косозубых шестерен привода газораспределения, включения муфты сцепления и нагрева вала. Чтобы ограничить осевые перемещения коленчатого вала, один из коренных подшипников (задний, передний или средний) выполняют упорным. Для этого вкладыши таких подшипников снабжаются отбортовкой, упорными кольцами или полукольцами. От осевых перемещений коленчатый вал дизельных двигателей тракторов ТДТ-55А, ТТ-4 и К-703 фиксируется четырьмя полукольцами, которые устанавливаются в выточках среднего (СМД-14БН) или заднего коренного подшипника.

Техническое обслуживание кривошипно-шатунного механизма

Детали кривошипно-шатунного механизма во время работы сильно нагреваются и воспринимают переменные нагрузки большой величины, поэтому для обеспечения длительной работы двигателя в исправном состоянии необходимо выполнять следующие рекомендации:

новый или отремонтированный двигатель необходимо подвергать обкатке;

пуск двигателя при температуре окружающей среды ниже -5°С следует производить при помощи предпускового подогревателя или только после предварительного прогрева водой;

не давать двигателю полной нагрузки, пока он не прогреется;

не перегружать двигатель длительное время и не допускать во время работы ненормальных стуков и дымления;

поддерживать температуру охлаждающей жидкости в пределах 82 - 85°С;

не допускать длительной работы на холостом ходу.

Основными внешними признаками неисправности кривошипно-шатунного механизма являются: повышенный расход масла, дымный выхлоп отработавших газов и ненормальные стуки. Все это происходит в результате износа деталей и увеличения зазоров в сопряжениях, что вызывает падение давления масла в магистрали. Прежде чем проверять зазор в подшипниках, следует убедиться в правильности показаний манометра, проверить загрязненность фильтров и состояние других элементов системы смазки. Предварительная оценка состояния подшипников коленчатого вала по давлению масла в масляной магистрали производится приспособлением КИ-4940: номинальное давление прогретого двигателя до нормального теплового состояния при номинальной частоте вращения должно быть 250 - 350 кПа (2,5 - 3,5 кгс/см2), а предельно допустимое 100 кПа (1,0 кгс/см2). Падение давления масла в магистрали ниже предельно допустимого является одной из причин износа шеек коленчатого вала и подшипников. Допустимый зазор в шатунных и коренных подшипниках коленчатого вала должен быть 0,3 мм.

Зазоры в подшипниках можно проверить следующим способом. После слива масла и снятия поддона необходимо ослабить гайки крепления крышек коренных и шатунных подшипников, и снять крышку проверяемого подшипника вместе с нижним вкладышем. Затем положить на него вдоль оси коленчатого вала прокладку из латуни размером 25x13x0,3 мм, т.е. толщиной, равной максимально допустимому зазору, поставить крышку на место и затянуть гайки. Затяжку производят при помощи динамометрического ключа. Гайки шатунных болтов следует стопорить новыми шплинтами. Момент затяжки гаек коренных подшипников составляет 200 - 220 Н м (20 - 22 кгс-м), а шатунных 150 - 180 Н м (15 - 18 кгс-м).

Затем проверяют возможность вращения коленчатого вала, предварительно включив декомпрессионный механизм. Если вал будет вращаться свободно, то зазор в подшипнике превышает допустимое значение.

Увеличение зазора между деталями цилиндро-поршневой группы приводит к падению мощности двигателя, повышенному угару масла и выделению газов из сапуна. Чтобы оценить состояние цилиндропоршневой группы, можно воспользоваться различными способами, но наиболее простыми являются такие, которые позволяют определить техническое состояние деталей без разборки двигателя. К этим способам относятся: определение компрессии в цилиндрах двигателя при помощи компрессиметра КИ-861 или технического состояния цилиндропоршневой группы по утечке газов в картер двигателя при помощи индикатора расхода газов КИ-4887-1.

Окончательное решение о техническом состоянии цилиндропоршневой группы можно принять только после частичной разборки двигателя с замером зазоров между отдельными сопряженными деталями. Например, предельные зазоры между основными деталями цилиндропоршневой группы, по которым оценивают техническое состояние двигателя А-ОЗМЛ, равны:

зазор между юбкой поршня и гильзой цилиндра в верхнем рабочем пояске - 0,60 мм;

зазор между остальными кольцами - 0,40 мм; зазор в стыке компрессионного кольца - 6,00 мм; зазор в стыке маслосъемного кольца - 3,00 мм; зазор между бобышками поршня и пальцем - 0,10 мм; зазор между верхней головкой шатуна и пальцем - 0,30 мм; выступание гильзы цилиндра относительно плоскости блока - 0,165 мм.

Для установки поршневых пальцев поршни перед сборкой нагревают в масле до температуры 80 - 100°С. Поршневые кольца подбирают по гильзе, а затем по канавкам в поршне. Для проверки зазора в замке кольца его устанавливают в гильзу при помощи Поршня на глубину 25 мм от верхнего торца. Подгонка зазора в замке осуществляется при помощи личного напильника, а под гонка кольца по канавкам в поршне по высоте осуществляется притиркой на чугунной плите.

Гильзы цилиндров меняют на новые, если их износ в верхней зоне первого компрессионного кольца превышает 0,60 мм. Поршни заменяют, если зазор между канавкой и новым компрессионным кольцом по высоте превышает 0,50 мм. Затяжку гаек на шпильках при креплении головки цилиндров двигателя производят в определенной последовательности, момент составляет 200 - 220 Н м (20 - 22 кгс-м)

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

У четырехцилиндрового двигателя кривошипно-шатунный механизм состоит из:

Блока цилиндров с картером, - головки блока цилиндров, - поддона картера двигателя, - поршней с кольцами и пальцами, - шатунов, - коленчатого вала, - маховика.

В состав КШМ кривошипно-шатунного механизма двигателя входит две группы деталей: неподвижные и подвижные.

К неподвижным деталям относятся блок цилиндров, служащий основой двигателя, цилиндр, головки блока или головки цилиндров и поддон картера.

Подвижными деталями являются поршни с кольцами и поршневыми пальцами, шатун, коленчатый вал, маховик.

Кривошипно-шатунный механизм воспринимает давление газов при такте сгорание-расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Материал и конструкция основных деталей КШМ. Кривошипно-шатунный механизм состоит из: блока цилиндров с картером, головки цилиндров, поршней с кольцами, поршневых пальцев, шатунов, коленчатого вала, маховика и поддона картера.

Блок цилиндров. Блок цилиндров является основной деталью двигателя к которой крепятся все механизмы и детали.

Цилиндры в блоках изучаемых двигателей расположены У-образно в два ряда под углом 90° (рис. 1).

Блоки цилиндров отливают из чугуна (ЗИЛ-130) или алюминиевого сплава. В той же отливке выполнены картер и стенки полости охлаждения, окружающие цилиндры двигателя.

В блоке двигателя устанавливают вставные гильзы, омываемые охлаждающей жидкостью. Внутренняя поверхность гильзы служит направляющей для поршней. Гильзу растачивают под требуемый размер и шлифуют. Гильзы, омываемые охлаждающей жидкостью, называются мокрыми. Они в нижней части имеют уплотняющие кольца из специальной резины или медные. Вверху уплотнение гильз достигается за счет прокладки головки цилиндров.

Увеличение срока службы гильз цилиндров достигается в результате запрессовки в наиболее изнашиваемую (верхнюю) их часть коротких тонкостенных гильз из кислотоупорного чугуна. Применение такой вставки снижает износ верхней части гильзы в 2--4 раза.

Блок цилиндров У-образного двигателя ЗИЛ-130 сверху закрыт двумя головками из алюминиевого сплава . В головке цилиндров двигателя ЗИЛ-130 размещены камеры сгорания, в которых имеются резьбовые отверстия для свечей зажигания. Для охлаждения камер сгорания в головке вокруг них выполнена специальная полость.

На головке цилиндров закреплены детали газораспределительного механизма. В головке цилиндров выполнены впускные и выпускные каналы и установлены вставные седла и направляющие втулки клапанов. Для создания герметичности между блоком и головкой цилиндров установлена прокладка, а крепление головки к блоку цилиндров осуществлено шпильками с гайками. Прокладка должна быть прочной, жаростойкой и эластичной. В двигателе ЗИЛ-130 она сталеасбестовая, . Для уплотнения стальной прокладки в расточку на нижней плоскости головки цилиндра запрессовано стальное кольцо с острым выступом.

Снизу картер двигателя закрыт поддоном, выштампованным из листовой стали. Поддон защищает картер от попадания пыли и грязи и используется в качестве резервуара для масла. Поддон крепится к плоскости разъема болтами, а для обеспечения герметичности соединения применяют прокладки из картона или из клееной пробковой крошки.

Во время работы двигателя в картер проникают газы, что может повлечь за собой повышение давления, прорыв прокладок и вытекание масла. Поэтому картер через специальную трубку (сапун) сообщается с атмосферой.

Поршень воспринимает давление газов при рабочем такте и передает его через поршневой палец и шатун на коленчатый вал. Поршень представляет собой перевернутый цилиндрический стакан, отлитый из алюминиевого сплава (рис. 2). В верхней части поршня расположена головка с канавками, в которые вставлены поршневые кольца. Ниже головки выполнена юбка, направляющая движение поршня. В юбке поршня имеются приливы-бобышки с отверстиями для поршневого пальца.

При работе двигателя поршень, нагреваясь, расширится и, если между ним и зеркалом (внутреннюю поверхность цилиндра или его гильзы называют зеркалом) цилиндра не будет необходимого зазора, заклинится в цилиндре, и двигатель прекратит работу. Однако большой зазор между поршнем и зеркалом цилиндра также нежелателен, так как это приводит к прорыву части газов в картер двигателя, падению давления в цилиндре и уменьшению мощности двигателя. Чтобы поршень не заклинивался при прогретом двигателе, головку поршня выполняют меньшего диаметра, чем юбку, а саму юбку в поперечном сечении изготавливают не цилиндрической формы, а в виде эллипса с большей осью его в плоскости, перпендикулярной поршневому пальцу. На юбке поршня может быть разрез. Благодаря овальной форме и разрезу юбки предотвращается заклинивание поршня при работе прогретого двигателя.

Общее устройство поршней всех двигателей принципиально одинаковое, но каждый из них отличается диаметром и рядом особенностей, присущих только данному двигателю. Например, в головке поршня двигателя ЗИЛ-130 залито чугунное кольцо, в котором сделана канавка под верхнее компрессионное кольцо. Такая конструкция способствует уменьшению износа канавки под поршневое кольцо.

Поршни двигателя ЗИЛ-130 после механической обработки покрывают оловом, что способствует лучшей приработке и уменьшению износа их в первоначальный период работы двигателя.

Поршневые кольца , применяемые в двигателе, подразделяются на компрессионные и маслосъемные. Компрессионные кольца уплотняют зазор между поршнем и цилиндром и служат для уменьшения прорыва газов из цилиндров в картер, а маслосъемные снимают излишки масла с зеркала цилиндров и не допускают проникновения масла в камеру сгорания. Кольца, изготовленные из чугуна или стали, имеют разрез (замок) (см. рис. 2).

При установке поршня в цилиндр поршневое кольцо предварительно сжимают, в результате чего обеспечивается его плотное прилегание к зеркалу цилиндра при разжатии. На кольцах имеются фаски, за счет которых кольцо несколько перекашивается и быстрее притирается к зеркалу цилиндра, и уменьшается насосное действие колец. Количество колец, устанавливаемых на поршнях двигателей, неодинаковое. На поршнях двигателей ЗИЛ-130 три компрессионных кольца, два верхних хромированы по поверхности, соприкасающейся с гильзой. Маслосъемное кольцо собрано из четырех отдельных элементов -- двух тонких стальных разрезных колец и двух гофрированных стальных расширителей (осевого и радиального).

Поршневой палец шарнирно соединяет поршень с верхней головкой шатуна. Палец изготовлен в виде пустотелого цилиндрического стержня, наружная поверхность которого закалена нагревом током высокой частоты.

На двигателе ЗиЛ-130 применяются «плавающие» пальцы, т. е. такие, которые могут свободно поворачиваться как в верхней головке шатуна, так и в бобышках поршня, что способствует равномерному износу пальца. Во избежание задиров цилиндров при выходе пальца из бобышек осевое перемещение его ограничивается двумя разрезными стальными кольцами, установленными в выточках в бобышках поршня.

Шатун служит для соединения коленчатого вала с поршнем. Через шатун давление на поршень при рабочем ходе передается на коленчатый вал. При вспомогательных тактах (впуск, сжатие и выпуск) через шатун поршень приводится в действие от коленчатого, вала. Шатун (рис. 3) состоит из стального стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхней установлен поршневой палец, а нижняя закреплена на шатунной шейке коленчатого вала. Для уменьшения трения в верхнюю головку шатуна запрессована бронзовая или биметаллическая с бронзовым слоем втулка, а в нижнюю, состоящую из двух частей, установлены тонкостенные вкладыши, представляющие собой стальную ленту, внутренняя поверхность которой покрыта тонким слоем антифрикционного сплава (ЗиЛ-130 - высоко- оловянистый алюминий). Обе части нижней головки шатуна скреплены двумя болтами, гайки которых во избежание самоотвертывания фиксируются. В двигателе ЗИЛ-130 под гайки подкладываются специальные шайбы, момент затяжки гаек 80...90,Н-м., а самоотвертыванию препятствуют специальные штампованные стопорные гайки. Затяжку стопорной гайки необходимо производить путем ее поворота на 1,5 ... 2 грани от положения соприкосновения о основной гайкой.

На стержне шатуна выштампован номер детали, а на крышке метка. Номер на шатуне и метка на его крышке всегда должны быть обращены в одну сторону. К верхней и нижней головкам шатуна подводится масло: к нижней головке -- через канал в коленчатом валу, а к верхней -- через прорезь. Из нижней головки шатуна масло через отверстие выбрызгивается на стенки цилиндров.

В двигателях на одной шатунной шейке коленчатого вала закреплено по два шатуна. Для правильной их сборки с поршнями нужно помнить, что шатуны правого ряда цилиндров собраны с поршнями так, что номер на шатуне обращен назад по ходу автомобиля (см. рис. 3), а левого ряда -- вперед, т. е. совпадает с надписью на поршне.

Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, который затем через маховик передается агрегатам трансмиссии.

В двигателе ЗиЛ-130 коленчатый вал стальной.Коленчатый вал (рис. 4) состоит из шатунных и коренных шлифованных шеек, щек и противовесов. На переднем конце вала двигателей ЗМЗ-53-12 и ЗИЛ-130 имеется углубление для шпонки распределительной шестерни и шкива привода вентилятора, а также нарезное отверстие для крепления храповика; задняя часть вала выполнена в виде фланца, к которому болтами прикреплен маховик. В углублении задней торцовой части коленчатого вала расположен подшипник ведущего вала коробки передач.

Количество и расположение шатунных шеек коленчатого вала зависит от числа цилиндров. В V-образном двигателе количество шатунных шеек в два раза меньше числа цилиндров, так как на одну шатунную шейку вала установлено по два шатуна -- один левого и другой правого рядов цилиндров.

Шатунные шейки коленчатого вала многоцилиндровых двигателей выполнены в разных плоскостях, что необходимо для равномерного чередования рабочих тактов в разных цилиндрах.

В восьмицилиндровых V-образных двигателях коленчатые валы имеют по четыре шатунные шейки, расположенные под углом в 90°.

В двигателе число коренных шеек коленчатого вала на одну больше, чем шатунных, т. е. каждая шатунная шейка с двух сторон имеет коренную. Такой коленчатый вал называют полноопорным.

Коренные и шатунные шейки коленчатого вала соединены между собой щеками.

Для уменьшения центробежных сил, создаваемых кривошипами, на коленчатом валу выполнены противовесы, а шатунные шейки сделаны полыми. Для повышения твердости и увеличения срока службы поверхность коренных и шатунных шеек стальных валов закаливают нагревом токами высокой частоты.

Коренные и шатунные шейки вала соединены каналами (сверлениями) в щеках вала. Зти каналы предназначены для подвода масла от коренных подшипников к шатунным.

В каждой шатунной шейке вала имеется полость, которая выполняет роль грязеуловителя. Сюда поступает масло от коренных шеек. При вращении вала частицы грязи, находящиеся в масле, под действием центробежных сил отделяются от масла и оседают на стенке грязеуловителя, а к шатунным шейкам поступает очищенное масло. Очистка грязеуловителей осуществляется через завернутые в их торцах резьбовые пробки только при разборке двигателя.

Перемещение вала в продольном направлении ограничивается упорными сталебаббитовыми шайбами, которые расположены по обе стороны первого коренного подшипника или четырьмя сталеалюминиевыми полукольцами, установленными в выточке задней коренной опоры. В местах выхода коленчатого вала из картера двигателя имеются сальники и уплотнители, предотвращающие утечку масла.

На переднем конце вала установлен резиновый самоподжимный сальник, а на заднем конце выполнена маслосгонная резьба или маслоотражательный буртик.

В заднем коренном подшипнике сделаны маслоулови-тельные каналы, в которые сбрасывается масло с маслосгонной резьбы или маслоотражательного буртика и установлен сальник, состоящий из двух кусков асбестового шнура.

Шатунные и коренные подшипники. В работающем двигателе нагрузки на шатунные и коренные шейки коленчатого вала очень велики. Для уменьшения трения коренные шейки, как и шатунные, расположены в подшипниках скольжения, которые выполнены в виде вкладышей, аналогичных шатунным. Вкладыши каждого коренного или шатунного подшипника состоят из двух половинок, устанавливаемых в нижней разъемной головке шатуна и в гнезде блока и крышке коренного подшипника. От провертывания вкладыши удерживаются выступом, входящим в паз шатунного или коренного подшипника. Крышки коренных подшипников закреплены при помощи болтов и гаек, которые для предотвращения от самоотвертывания зашплинтованы проволокой либо застопорены замковыми пластинами.

Маховик уменьшает неравномерность работы двигателя, выводит поршни из мертвых точек, облегчает пуск двигателя и способствует плавному троганию автомобиля с места. Маховик изготовлен в виде массивного чугунного диска и прикреплен к фланцу коленчатого вала болтами с гайками. При изготовлении маховик балансируется вместе с коленчатым валом. Для предотвращения нарушения балансировки при разборке двигателя маховик установлен на несимметрично расположенные штифты или болты.

Картер двигателя , отлитый заодно с блоком цилиндров, является базисной (основной) деталью. К картеру крепятся детали кривошипно-шатунного и газораспределительного механизмов. Для повышения жесткости внутри картера выполнены ребра, в которых расточены гнезда коренных подшипников коленчатого вала и опорных шеек распределительного вала.

Снизу картер закрыт поддоном, выштампованным из тонкого стального листа.

Поддон является резервуаром для масла и в то же время защищает детали двигателя от пыли и грязи. В нижней части поддона предусмотрено отверстие для выпуска масла, закрываемое резьбовой пробкой. Поддон прикреплен к картеру болтами. Чтобы не было утечки масла, между поддоном и картером установлены прокладки и резиновые уплотнители.

Неисправности и способы их устранения. При значительных изнашиваниях и поломках детали КШМ восстанавливают или заменяют. Эти работы, как правило, выполняют, отправляя в централизованный ремонт.

Закоксование поршневых колец в канавках можно устранить без разборки двигателя. Для этого в конце рабочего дня, пока двигатель не остыл, в каждый цилиндр через отверстие для свечей зажигания заливают по 20 г смеси равных частей денатурированного спирта и керосина. Утром двигатель пускают и после его работы 10-15 мин на холодном ходу останавливают и заменяют масло.

Диагностирование кривошипно-шатунного механизма производится на посту Д-2. При выявлении пониженных тяговых качествах, замеренных во всех цилиндрах автомобиля на стенде тягово-экономических качеств.

Компрессию двигателя определяют при вывернутых свечах у прогретого двигателя при t = 70-80°С и полностью открытых воздушных и дроссельных заслонках. Установив резиновый наконечник компрессометра в отверстие свечи проверяемого цилиндра, проворачиваем коленчатый вал стартером на 10-15 оборотов и записываемпоказания монометра. Компрессия должна быть для исправного автомобиля 0,75 - 0,80 мПа. Разница в показателях между цилиндрами не должна быть более 0,07 - 0,1 мПа.

В результате износа цилиндра, поршня и поршневых колец происходит падение компрессии (давления конца сжатия), мощности, уменьшается частота вращения коленчатого вала, увеличивается расход топлива и смазочного масла, появляется дым в картере двигателя. Эти же явления могут наблюдаться и в результате закоксовывания поршневых колец. Падение компрессии в дизельных двигателях сильно затрудняет их пуск, особенно при низких температурах.

Детонационные стуки при работе карбюраторного двигателя на бензине соответствующей марки и при правильной установке зажигания возникают при повышенных отложениях нагара в камере сгорания и перегреве деталей. Преждевременная вспышка топлива также происходит в результате перегрева деталей и отложения нагаров.

Стуки поршней, пальцев, а также стуки в шатунных и коренных подшипниках возникают при сильном увеличении зазоров в сопряжениях этих деталей в процессе их износа.

Падение давления масла в смазочной системе происходит из-за увеличения зазоров в шатунных и коренных подшипниках.

Типы и виды КШМ

а) Несмещенный (центральный) кшм, у которого ось цилиндра пересекается с осью коленчатого вала.

б) Смещенный кшм, у которого ось цилиндра смещена относительно оси коленчатого вала на величину а;

в) V-образный кшм (в том числе с прицепным шатуном), у которого два шатуна, работающие на левый и правый цилиндры, размещены на одном кривошипе коленчатого вала.

Информационная модель технологического процесса боронования. Типы рабочих органов борон. Конструктивные компоновки дисковых и зубовых борон. Графический и аналитический методы расчёта основных конструктивных параметров дисковых и зубовых борон.

Сейчас существуют бороны, изготавливаемые двумя основными видами рабочих органов: дисковые бороны (похожи на тарельчатые диски) и зубовые бороны (в виде зубьев). Зубья – это особые металлические стержни, имеющие длину 100 миллиметров. Они располагаются на раме таким образом, что работая с их помощью, никакой из них не пойдет по следу другого. Также применяют сетчатые бороны, которые не имеют жесткую раму. А на каменистых почвах зачастую работают бороны, имеющие зубья похожие на пластинчатые пружины.

Просмотров