Топливный элемент на водороде: описание, характеристики, принцип работы, фото. Водородные топливные элементы AT Energy Топливная ячейка для водородной энергетики

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

Экология познания.Наука и техника: Водородная энергетика является одной из самых высокоэффективных отраслей, а топливные элементы позволяют ей оставаться на передовой инновационных технологий.

Топливный элемент – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Опять же, подобно батарее, топливный элементвключает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха. Правильный термин для описания работающего топливного элемента – это система элементов, так как для полноценной работы требуется наличие некоторых вспомогательных систем.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр.,топливные элементы не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибраций. Топливные элементы вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе топливных элементов являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы собираются в сборки, а затем в отдельные функциональные модули.

Принцип работы топливных элементов

Топливные элементы вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.

Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород - на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода. На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H2 => 4H+ + 4e-
Реакция на катоде: O2 + 4H+ + 4e- => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

Типы топливных элементов

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливной элементы зависит от его применения. Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород.

Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы на расплаве карбоната (РКТЭ).

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников. Данный процесс был разработан в середине 1960-х гг. С того времени была улучшена технология производства, рабочие показатели и надежность.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO32-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO32- + H2 => H2O + CO2 + 2e-
Реакция на катоде: CO2 + 1/2O2 + 2e- => CO32-
Общая реакция элемента: H2(g) + 1/2O2(g) + CO2(катод) => H2O(g) + CO2(анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода, "отравлению", и пр.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 2,8 МВт. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы на основе фосфорной кислоты (ФКТЭ).

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования. Данный процесс был разработан в середине 1960-х гг., испытания проводились с 1970-х гг. С того времени была увеличена стабильность, рабочие показатели и снижена стоимость.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H3PO4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов (МОПТЭ), в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H2 => 4H+ + 4e-
Реакция на катоде: O2(g) + 4H+ + 4e- => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 400 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы с мембраной обмена протонов (МОПТЭ)

Топливные элементы с мембраной обмена протонов считаются самым лучшим типом топливных элементов для генерации питания транспортных средств, которое способно заменить бензиновые и дизельные двигатели внутреннего сгорания. Эти топливные элементы были впервые использованы НАСА для программы "Джемини". Сегодня разрабатываются и демонстрируются установки на МОПТЭ мощностью от 1Вт до 2 кВт.

В качестве электролита в этих топливных элементах используется твердая полимерная мембрана (тонкая пластмассовая пленка). При пропитывании водой этот полимер пропускает протоны, но не проводит электроны.

Топливом является водород, а носителем заряда – ион водорода (протон). На аноде молекула водорода разделяется на ион водорода (протон) и электроны. Ионы водорода проходят сквозь электролит к катоду, а электроны перемещаются по внешнему кругу и производят электрическую энергию. Кислород, который берется из воздуха, подается к катоду и соединяется с электронами и ионами водорода, образуя воду. На электродах происходят следующие реакции:

Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e-
Реакция на катоде: O2 + 2H2O + 4e- => 4OH-
Общая реакция элемента: 2H2 + O2 => 2H2O

По сравнению с другими типами топливных элементов, топливные элементы с мембраной обмена протонов производят больше энергии при заданном объеме или весе топливного элемента. Эта особенность позволяет им быть компактными и легкими. К тому же, рабочая температура – менее 100°C, что позволяет быстро начать эксплуатацию. Эти характеристики, а также возможность быстро изменить выход энергии – лишь некоторые черты, которые делают эти топливные элементы первым кандидатом для использования в транспортных средствах.

Другим преимуществом является то, что электролитом выступает твердое, а не жидкое, вещество. Удержать газы на катоде и аноде легче с использованием твердого электролита, и поэтому такие топливные элементы более дешевы для производства. По сравнению с другими электролитами, при применении твердого электролита не возникает таких трудностей, как ориентация, возникает меньше проблем из-за появления коррозии, что ведет к большей долговечности элемента и его компонентов.

Твердооксидные топливные элементы (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О2-). Технология использования твердооксидных топливных элементов развивается с конца 1950-х гг. и имеет две конфигурации: плоскостную и трубчатую.

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H2 + 2O2- => 2H2O + 4e-
Реакция на катоде: O2 + 4e- => 2O2-
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60%. Помимо этого, высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 70%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH3OH) окисляется при наличии воды на аноде с выделением СО2, ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH3OH + H2O => CO2 + 6H+ + 6e-
Реакция на катоде: 3/2O2 + 6H+ + 6e- => 3H2O
Общая реакция элемента: CH3OH + 3/2O2 => CO2 + 2H2O

Разработка данных топливных элементов была начата в начале 1990-х гг. После создания улучшенных катализаторов и, благодаря другим недавним нововведениям, была увеличена удельная мощность и КПД до 40%.

Были проведены испытания данных элементов в температурном диапазоне 50-120°C. Благодаря низким рабочим температурам и отсутствию необходимости использования преобразователя, топливные элементы с прямым окислением метанола являются лучшим кандидатом для применения как в мобильных телефонах и других товарах широкого потребления, так и в двигателях автомобилей. Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы (ЩТЭ)

Щелочные топливные элементы (ЩТЭ) – одна из наиболее изученных технологий, используемая с середины 1960-х гг. агентством НАСА в программах "Аполлон" и "Спейс Шаттл". На борту этих космических кораблей топливные элементы производят электрическую энергию и питьевую воду. Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°С до 220°С. Носителем заряда в ЩТЭ является гидроксильный ион (ОН-), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e-
Реакция на катоде: O2 + 2H2O + 4e- => 4OH-
Общая реакция системы: 2H2 + O2 => 2H2O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. Кроме того, ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO2, который может содержаться в топливе или воздухе. CO2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H2O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H2O+ (протон, красный) присоединяется к молекуле воды. Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°С.

Твердокислотные топливные элементы (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO4) не содержит воды. Рабочая температура поэтому составляет 100-300°С. Вращение окси анионов SO42-позволяет протонам (красный) перемещаться так, как показано на рисунке.

Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.опубликовано

Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные установки
ЩТЭ 50–200°C 40-65% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Присоединяйтесь к нам в

Предприниматель Данила Шапошников говорит, что взялся вывести продукт на рынок из лаборатории. Стартап AT Energy делает водородные топливные элементы, на которых беспилотники смогут летать в разы дольше, чем сейчас.

Предприниматель Данила Шапошников помогает ученым Юрию Добровольскому и Сергею Нефедкину коммерциализировать их изобретение — компактные водородные топливные элементы, которые могут работать несколько часов, не боясь мороза и влаги. Созданная ими компания AT Energy уже привлекла около 100 млн руб. инвестиций и готовится к покорению мирового рынка беспилотных летательных аппаратов объемом $7 млрд, на котором пока преимущественно используют литиево-ионные аккумуляторы.

Из лаборатории на рынок

Начало бизнесу положило знакомство Шапошникова с двумя докторами наук в области энергетики и электрохимии — Добровольским из Института проблем химической физики РАН в Черноголовке и Нефедкиным, возглавляющим Центр водородной энергетики в Московском энергетическом институте. У профессоров была идея, как делать низкотемпературные топливные элементы, но они не понимали, как вывести свое изобретение на рынок. «Я выступил предпринимателем-инвестором, который рискнул вывести продукт в рынок из лаборатории», — вспоминает Шапошников в интервью РБК.

В августе 2012 года Шапошников, Добровольский и Нефедкин зарегистрировали компанию AT Energy (ООО «Эй Ти Энерджи») и стали готовить опытные образцы. Компания подала заявку и стала резидентом Сколково. Весь 2013 год на арендованной базе института в Черноголовке основатели AT Energy работали над тем, чтобы радикально увеличить срок работы аккумуляторов на основе топливных элементов. «Черноголовка — наукоград, там достаточно легко найти и привлечь к работе лаборантов, инженеров и электрохимиков», — говорит Шапошников. Потом AT Energy переехала в черноголовский технопарк. Там и появился первый продукт — топливный элемент для беспилотников.

«Сердцем» топливного элемента, разработанного в AT Energy, является мембранно-электродный блок, в котором происходит электрохимическая реакция: с одной стороны подается воздух с кислородом, с другой — сжатый газообразный водород, в результате химической реакции окисления водорода вырабатывается энергия.

Под реальный продукт AT Energy смогла получить два гранта Сколково (в сумме почти 47 млн руб.), а также привлечь около $1 млн инвестиций. В проект поверили фонд North Energy Ventures (получил 13,8% AT Energy, его партнером является сам Шапошников), венчурный фонд Phystech Ventures (13,8%), основанный выпускниками Московского физико-технического института, и девелопер «Мортон» (10%); напрямую Шапошникову и Добровольскому сейчас принадлежит по 26,7% AT Energy, а Нефедкину — 9% (все — по данным ЕГРЮЛ).

AT Energy в цифрах

Около 100 млн руб. — общая сумма привлеченных инвестиций

3-30 кг — масса беспилотников, для которых AT Energy делает энергосистемы

$7 млрд в год — объем мирового рынка беспилотников в 2015 году

$90 млн — объем российского рынка военных беспилотников в 2014 году

$5 млн — объем российского гражданского рынка беспилотников в 2014 году

$2,6 млрд — объем мирового рынка топливных элементов в 2014 году

Источник: данные компании, Business Insider, Markets & Markets

Летает дольше, еще дольше

На сегодняшний день почти 80% беспилотников в мире используют электрические двигатели, которые питаются от литиево-ионных или литиево-полимерных аккумуляторов. «Самая большая проблема с батарейками — в том, что в ней есть ограничения энергоемкости по габаритам. Хочешь в два раза больше энергии — ставь еще один аккумулятор, и еще один, и т.д. А в беспилотниках самый важный параметр — это его масса», — объясняет Шапошников.

От массы беспилотника зависит его полезная нагрузка — количество устройств, которые можно на него повесить (например, камеры, тепловизоры, сканирующие устройства и пр.), а также время полета. На сегодняшний день дроны летают в основном от получаса до полутора часов. «Полчаса это неинтересно, — говорит Шапошников. — Получается, только ты его поднял в воздух, как уже пора менять аккумулятор». Кроме того, литиево-ионные батареи капризно себя ведут при отрицательных температурах. Шапошников утверждает, что разработанные в AT Energy топливные элементы позволяют дронам летать до пяти раз дольше: от двух с половиной до четырех часов, а мороза не боятся (до минус 20 градусов).

Расходные материалы и комплектующие для своих аккумуляторов AT Energy закупает как в России, так и за рубежом. «Для научных разработок подразумеваются небольшие серии, так что мы пока ​​​не можем дать потенциальным российским производителям необходимых нам компонентов горизонт планирования, чтобы они могли локализовать их производство», — объясняет Шапошников.​​

В 2014 году AT Energy выполнила первые контракты: поставила 20 аккумуляторных систем на основе своих топливных элементов военным (заказчика Шапошников не называет). Ими также были оснащены дроны компании «АФМ-Серверс», которая использовала их при видеосъемке Олимпиады в Сочи. «Одна из целей компании была протестировать наши системы на беспилотниках, и нам было все равно, заплатят нам за это или нет», — вспоминает Шапошников. На сегодняшний день у AT Energy подписан ряд контракт​ов и предконтрактов, потенциальная выручка по которым, по словам Шапошникова, составляет 100 млн руб. (в основном с госструктурами).

Финансовые результаты деятельности AT Energy Шапошников не раскрывает. По данным «Контур.Фокус», в 2014 году компания имела выручку в 12,4 млн руб. и чистый убыток в 1,2 млн руб. Стоимость топливных элементов мощностью до 0,5 кВт производства AT Energy, по словам Шапошникова, колеблется в интервале $10-25 тыс., в зависимости от типа беспилотника, стоящих перед ним задач, длительности полета и других параметров.

Девальвация рубля, по словам Шапошникова, облегчит компании выход на мировой рынок. «Мы ставим себе цель в 2016 году завязать отношения с западными игроками, а в 2017 году сделать первые продукты для основных типов зарубежных беспилотников», — говорит он.

ИНВЕСТОР

«AT Energy удалось создать топливный элемент с уникальными характеристиками»

Олег Перцовский, директор по операционной работе кластера энергоэффективных технологий фонда «Сколково»

«Они смогли сделать устройство, которое работает при отрицательных температурах, при этом достаточно компактное и недорогое. Для наукоемких проектов четыре года — это короткий промежуток времени, поэтому они движутся нормальными темпами, на наш взгляд. Беспилотники — это одна из очевидных и наиболее перспективных сфер для применения топливных элементов. Заменив источник питания, беспилотник сможет при тех же массово-габаритных характеристиках в несколько раз увеличить время полета. Еще есть рынок автономного энергоснабжения, например для сотовых сетей, где есть большая потребность в источниках питания небольшой мощности в отдаленных районах, куда не подведены электрические сети».

«Создание конкурентного продукта и выход на этот рынок имеют значительные инвестиционные риски»

Сергей Филимонов, руководитель корпоративного венчурного фонда GS Venture (в составе GS Group)

«Рынок топливных элементов с высокой емкостью значительно шире и сложнее сферы беспилотных летательных аппаратов. Но топливным элементам предстоит конкурировать с рядом существующих источников энергии, как с точки зрения эффективности, так и стоимости. Создание конкурентного продукта и выход на этот рынок имеют значительные инвестиционные риски. Для GS Venture направления БПЛА и топливных элементов достаточно интересны, но фонд не готов инвестировать в стартап только потому, что эта компания работает в развивающейся сфере и нацелена на активно растущий рынок.

КЛИЕНТЫ

«Это лучшая технология на рынке, но слишком дорогая»

Олег Панфиленок, основатель и генеральный директор компании Copter Express

«У AT Energy очень сильная технология. Связка «топливный элемент плюс баллон с водородом» позволяет добиться уверенной энергоемкости, существенно более высокой, чем в литиево-полимерных или литиево-ионных батареях. Мы уже спроектировали дрон для картографирования, около 1 метра в диаметре, чтобы облетать большую территорию, — если на него поставить водородно-топливные элементы, он будет летать до четырех часов. Это было бы удобно и эффективно, не пришлось бы по несколько раз сажать аппарат для подзарядки.

На сегодняшний момент это точно лучшая технология на рынке, но есть одна проблема: для нас это слишком дорого. Один элемент питания от AT Energy может стоить порядка 500 тыс. руб. — на порядок выше, чем литиево-полимерный аккумулятор. Да, это в полтора​ раза дешевле иностранных аналогов, но нам надо в десять. Мы не военные, у которых есть бюджеты, мы коммерческая компания и не готовы платить большие деньги. Это для военных характеристики беспилотника важнее, чем его стоимость, а для коммерции наоборот — лучше пусть он будет хуже, но дешевле».

«Время полета дрона для многих задач является самым важным фактором»

Максим Шинкевич, гендиректор группы компаний «Беспилотные системы»

«Мы очень хорошо знакомы с компанией AT Energy и подписали с ними соглашение о сотрудничестве. Мы недавно закончили разработку нового мультикоптера увеличенного размера с полезной нагрузкой до 2 кг, который будет оснащен топливными элементами от AT Energy и будет летать на них от 2,5 до 4 часов. На литиевых аккумуляторах такой дрон летал бы всего 30 минут. Этот беспилотник может использоваться как в гражданских, так и в военных целях — это комплекс видеонаблюдения для поиска и спасания людей, мы уже готовы запускать его в серию. У нас уже есть на него первый гражданский заказчик, как только мы покажем его в действии, появятся и другие контракты.

Одна из главных проблем в массовом использовании топливных элементов — отсутствие сети станций для их зарядки. Они дороже аккумуляторов (в результате стоимость дрона с их использованием увеличивается на 15%), но взамен вы приобретаете увеличение продолжительности полета более чем в два раза. Время полета дрона для многих задач является самым важным фактором».

Наталья Суворова

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

  • Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:
    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),
    • химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),
    • они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).
  • Каждый топливный элемент создаёт напряжение в 1 В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.
  • У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).
  • Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,
  • КПД почти не зависит от коэффициента загрузки ,
  • Ёмкость в несколько раз выше , чем в существующих аккумуляторах,
  • Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

  • по используемому топливу,
  • по рабочему давлению и температуре,
  • по характеру применения.

В целом, выделяют следующие типы топливных элементов :

  • Твердооксидный топливный элемент (Solid-oxide fuel cells — SOFC);
  • Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell — PEMFC);
  • Обратимый топливный элемент (Reversible Fuel Cell - RFC);
  • Прямой метанольный топливный элемент (Direct-methanol fuel cell — DMFC);
  • Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells — MCFC);
  • Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells — PAFC);
  • Щелочной топливный элемент (Alkaline fuel cells — AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

  • Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.
  • Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.
  • Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.

На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Далеко не каждому очевидно, чем аккумулятор отличается от суперконденсатора и почему водородный топливный элемент можно использовать, не опасаясь нанести вред окружающей среде. В этой статье мы расскажем о том, как для получения электроэнергии используются химические реакции, в чем разница между основными типами современных химических источников тока и какие перспективы открываются перед электрохимической энергетикой.

Химия как источник электричества

Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.

Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.

Схема гальванического элемента

Wikimedia commons

Помимо материалов анода и катода, важной составляющей химического источника тока является электролит, внутри которого движутся ионы и на границе которого с электродами протекают все электрохимические реакции. При этом электролит не обязательно должен быть жидким - это может быть и полимерный, и керамический материал.

Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.


Пальчиковые щелочные батарейки

Возможность перезарядки

Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора - источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.


Автомобильный свинцово-кислотный аккумулятор

На сегодня создано много различных типов аккумуляторов, которые отличаются типом происходящей в них химической реакции. Наиболее распространенными типами аккумуляторов являются свинцово-кислотные (или просто свинцовые) аккумуляторы, в основе которых лежит реакция окисления-восстановления свинца. Такие устройства обладают довольно длительным сроком службы, а их энергоемкость составляет до 60 ватт-часов на килограмм. Еще более популярными в последнее время являются литий-ионные аккумуляторы, основанные на реакции окисления-восстановления лития. Энергоемкость современных литий-ионных аккумуляторов сейчас превышает 250 ватт-часов на килограмм.


Литий-ионный аккумулятор для мобильного телефона

Основными проблемами литий-ионных аккумуляторов являются их небольшая эффективность при отрицательных температурах, быстрое старение и повышенная взрывоопасность. А из-за того, что металлический литий очень активно реагирует с водой с образованием газообразного водорода и при горении аккумулятора выделяется кислород, самовозгорание литий-ионного аккумулятора очень тяжело поддается традиционным способам пожаротушения. Для того чтобы повысить безопасность такого аккумулятора и ускорить время его зарядки, ученые предлагают материал катода, воспрепятствовав образованию дендритных литиевых структур, а в электролит добавить вещества, которые образование взрывоопасных структур, и компоненты, возгорание на ранних стадиях.

Твердый электролит

В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы - в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H + , ионы лития Li + или ионы кислорода O 2- .

Водородные топливные элементы

Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.

Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.

Наиболее подходящее вещество такого типа - газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2H 2 + O 2 → 2H 2 O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.

Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство - совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.


Принципиальная схема работы водородного топливного элемента

Схема работающего водородного топливного элемента очень похожа на схему химического источника тока, но содержит в себе дополнительные каналы для подачи топлива и окислителя и отвода продуктов реакции и избытка поданных газов. Электродами в таком элементе являются пористые проводящие катализаторы. К аноду подается газообразное топливо (водород), а к катоду - окислитель (кислород из воздуха), и на границе каждого из электродов с электролитом проходит своя полуреакция (окисление водорода и восстановление кислорода соответственно). При этом, в зависимости от типа топливного элемента и типа электролита, само образование воды может протекать или в анодном, или в катодном пространстве.


Водородный топливный элемент Toyota

Joseph Brent / flickr

Если электролит является протонпроводящей полимерной или керамической мембраной, раствором кислоты или щелочи, то носителем заряда в электролите являются ионы водорода. В таком случае на аноде молекулярный водород окисляется до ионов водорода, которые проходят через электролит и там реагируют с кислородом. Если же носителем заряда является ион кислорода O 2– , как в случае твердооксидного электролита, то на катоде происходит восстановление кислорода до иона, этот ион проходит через электролит и окисляет на аноде водород с образованием воды и свободных электронов.

Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.

Эффективность топливных элементов

Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.

Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых , например, графеновые мембраны.

В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.

Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.

Альтернативные электрохимические накопители

Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) - устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.

Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов - высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!

Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых .

* * *

Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.

N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?

Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.

Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками.

Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов - «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии».

Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых - топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.

Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.


Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?

Одними из наиболее перспективных типов топливных элементов являются протонно-керамические элементы. Они обладают преимуществами перед полимерными топливными элементами с протонно-обменной мембраной и твердооксидными элементами, так как могут работать при прямой подаче углеводородного топлива. Это существенно упрощает конструкцию энергоустановки на основе протонно-керамических топливных элементов и систему управления, а следовательно, увеличивает надежность работы. Правда, такой тип топливных элементов на данный момент является исторически менее проработанным, но современные научные исследования позволяют надеяться на высокий потенциал данной технологии в будущем.

Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?

Сейчас ученые УрФУ совместно с Институтом высокотемпературной электрохимии (ИВТЭ) Уральского отделения Российской академии наук работают над созданием высокоэффективных электрохимических устройств и автономных генераторов электроэнергии для применений в распределенной энергетике . Создание энергоустановок для распределенной энергетики изначально подразумевает разработку гибридных систем на основе генератора электроэнергии и накопителя, в качестве которых выступают аккумуляторы. При этом топливный элемент работает постоянно, обеспечивая нагрузку в пиковые часы, а в холостом режиме заряжает аккумулятор, который может сам выступать резервом как в случае высокого энергопотребления, так и в случае внештатных ситуаций.

Наибольших успехов химики УрФУ и ИВТЭ достигли в области разработки твердо-оксидных и протонно-керамических топливных элементов. Начиная с 2016 года на Урале вместе с ГК «Росатом» создается первое в России производство энергоустановок на основе твердо-оксидных топливных элементов. Разработка уральских ученых уже прошла «натурные» испытания на станции катодной защиты газотрубопроводов на экспериментальной площадке ООО «Уралтрансгаз». Энергоустановка с номинальной мощностью 1,5 киловатта отработала более 10 тысяч часов и показала высокий потенциал применения таких устройств.

В рамках совместной лаборатории УрФУ и ИВТЭ ведутся разработки электрохимических устройств на основе протонпроводящей керамической мембраны. Это позволит в ближайшем будущем снизить рабочие температуры для твердо-оксидных топливных элементов с 900 до 500 градусов Цельсия и отказаться от предварительного риформинга углеводородного топлива, создав, таким образом, экономически эффективные электрохимические генераторы, способные работать в условиях развитой в России инфраструктуры газоснабжения.

Александр Дубов

Просмотров