40 esc регулятор схема управления. Контроллеры бесколлекторных моторов (Brushless ESC). Устройство и принцип работы. Виды BEC и их преимущества

Если вы когда-либо задумывались над тем, для чего нужны разные компоненты контроллера, то в статье Джонатана Фелдкампа из Castle Creations вы узнаете о назначении его компонентов, а так же о том как осуществляется управление двигателем. Обладая этими знаниями вы будете лучше понимать какие технологии используются в контроллерах и сможете лучше подобрать модель, подходящую для вашего применения.

Примечание к переводу:

  • Аббревиатура ESC (Electric speed controller — Электронный крнтроллер скорости) будет часто заменяться на слово контроллер.
  • Аббревиатура BEC (Battery eliminator circuit) будет заменяться на регулятор.
  • Аббревиатура MOSFET(FET) (Metal Oxide Semiconductor Field Effect Transistor полевые транзисторы со структурой металл-диэлектрик-полупроводник) будет заменяться на слово ключ.

Основные компоненты и их назначение.

Задача контроллера состоит в том, что бы передать энергию постоянного тока от аккумулятора к трехфазному бесколлекторному мотору. Прежде чем мы перейдем непосредственно к контроллеру, полезно будет посмотреть как устроен мотор с точки зрения электричества. Типичный бесколлекторный мотор имеет три обмотки (фазы), будем называть их A, B, C. Фазы могут быть соединены методом «звезда» и методом «дельта».

Схема подключения обмоток бесколлекторного мотора.

На картинке проводники образуют обмотки (фазы) и заканчиваются выводами. Хотя соединения обмоток сильно отличаются внешне, в плане электричества разница не большая.

Важно понимать, что все что мы делаем с фазами A и B, оказывает влияние на фазу С. Почему это важно, мы рассмотрим чуть позже. Так же обратите внимание, что в отсутствие каких-либо внешних сил (например, переменного магнитного поля), фазы это просто замкнутые куски провода, именно такими они являются для контроллера во время запуска мотора.

Работа контроллера заключается в том, чтобы передать мотору энергию батареи. Для передачи энергии контроллер использует MOSFET’ы — силовые ключи, которые могут открываться и закрываться за долю секунды. Условно схему бесколлектрной системы можно представить в сл. виде:

Картинка показывает, что закрывая ключи А и В, которые отмечены красной звездочкой, мы пускаем ток от точки +In через фазы А и В на землю. Ток, протекающий через фазы (они же обмотки), создает магнитное поле, которое притягивает или отталкивает магниты ротора и, таким образом, вызывает вращение.

MOSFET’ы (FET’ы)

Вызвать проворот мотора очень просто, можно просто подключить любые две фазы мотора напрямую к аккумулятору. (Очевидно, что делать этого не стоит, испортите батарею или мотор, если оставите батарею подключенной более чем на тысячную долю секунды. Отсюда следует еще одна из основных задач контроллера — ограничить ток протекающий через фазу при коммутации.) Фокус поддержания вращения в том, что бы открыть два нужных ключа в нужный момент времени и тут же закрыть ключи, пока ситуация не вышла из-под контроля. Пока ток протекает по обмотке, магнит ротора притягивается к обмотке (полюс S к N или N к S), тянет за собой ротор и поворачивает его. Как только магнит проходит обмотку, мы открываем другие ключи так, что бы теперь отталкивать магнит ротора (N от N или S от S) и проталкивать магнит по направлению вращения дальше от этой обмотки. Теперь повторите эту идею для всех трех обмоток и станет ясно, как заставить ротор с магнитами продолжать вращаться. Как только вращение началось, нам остается только переключать обмотки снова и снова, что бы поддерживать этот процесс. Для реального примера рассмотрите следующую фотографию типичного контроллера:

Ключи контроллера.

На фото хорошо видны шесть полевых транзисторов MOSFET, которые используются для включения и выключения фаз. Еще видны провод подключения к приемнику и большой конденсатор, который служит накопителем энергии для контроллера. Мелкие детали это различные фильтры, который нужны для правильной работы контроллера. Мощная пайка контактов обеспечивает протекание больших токов. На следующей иллюстрации поверх фотографии нанесено изображение ключей:

Схематическое изображение ключей.

Теперь, когда мы получили представление о том, как поддерживать вращение бесколлекторного мотора, давайте рассмотрим функциональную диаграмму всего контроллера. В контроллере выделяются четыре основных блока: силовые ключи MOSFET, цепь управления ключами, микропроцессор и цепь определения положения ротора. Схема показывает, как эти части соединены между собой.

Теперь у нас есть представление о том, как работает силовая часть регулятора: MOSFET’ы работают как ключи, открываясь и закрываясь они вызывают протекание тока через обмотки мотора. Иногда мощности одного ключа недостаточно, для мощных регуляторов используются несколько ключей включенных параллельно. Нагрев регулятора практически полностью вызван внутренним сопротивлением ключей, каждый раз увеличивая кол-во ключей на фазу в 2 раза мы соответственно снижаем общее сопротивление ключей в 2 раза. Как альтернативу использованию нескольких параллельных ключей, можно устанавливать более качественные ключи.

Цепь управления MOSFET’ами.

Управление ключами не такая простая задача, как может показаться на первый взгляд. Если посмотреть на электрическую схему, мы обнаружим, что у ключей три контакта. Контакт, по которому ток втекает в транзистор, называется «исток», контакт, по которому ток вытекает, называется «сток», контакт, который отходит в сторону называется «затвор», это переключатель ключа. Для того, что-бы открыть ключ, необходимо на затвор подать напряжение на 5В-10В выше чем подведено к истоку транзистора. Для нижней части ключей (которые подключены к отрицательному контакту батареи) это относительно просто, нам надо подать всего 10 вольт. Для того, что бы открыть верхние ключи, которые подключены к положительному контакту батареи, нужно приложить напряжение на 10 вольт выше чем напряжение силовой батареи. К примеру, если у нас батарея LiPo 4S, к верхнему транзистору подведено напряжение 14.8В, но для того, что бы открыть ключ, к затвору нужно подвести напряжение в 25В. Разработчики регуляторов используют готовые блоки управления ключами, или разрабатывают собственные.

Блок определения положения ротора.

Для того, что бы знать, когда открывать и закрывать ключи, регулятор должен знать положение магнитов ротора вращающегося мотора. Это самая хитрая функция регулятора и именно поэтому раньше моторы и регуляторы использовали дополнительные датчики определения положения ротора (схема с сенсором до сих пор популярна в автомодельном хобби). Бессенсорные регуляторы, как видно из названия, обходятся без сенсора и используют уникальный алгоритм определения положения ротора: в каждый момент времени регулятор использует только 2 фазы для питания мотора, третья фаза при этом полностью отключена. Вращающееся магнитное поле наводит ЭДС в третьей обмотке. Измерив и проанализировав наведенное напряжение, можно определить как далеко провернулся магнит, и понять когда нужно закрыть текущую пару ключей и открыть следующую.

Микроконтроллер и его программное обеспечение.

Без сомнения, микроконтроллер это мозг всего процесса. Принцип его работы во многом схож с обычным компьютером: программисты пишут программу, компилируют и загружают ее в память контроллера. Микроконтроллер выполняет программу и в соответствии с ней посылает управляющие сигналы в цепь управления ключами, определяет положение мотора, обрабатывает сигналы с приемника, вычисляет требуемую выходную мощность и мигает светодиодом. Обработка сигнала с приемника стандартна. Управляющий сигнал это серия импульсов, длина которых определяет выходную мощность. Ширина импульса в 1мс означает полностью убранный газ, 2мс — полностью открытый. Величина частичного открытия газа определяется шириной импульса между этими двумя значениями. Внешне все просто, но микроконтроллеру важно при этом еще и успевать отслеживать положение мотора, что бы не пропустить момент переключения ключей.

Работа мотора на среднем газу гораздо более сложный процесс, нежели работа на полном газу. Вместо того, что бы оставить два ключа открытыми на определенное время, микроконтроллер открывает один ключ и быстро начинает открывать и закрывать второй. На малом газу второй ключ закрыт большую часть времени, в то время как при приближению к полному газу, он открыт почти все время. Частота, с которой контроллер открывает/закрывает второй ключ, называется PWM-частотой.

Физические возможности регуляторов: 4s, 6s, HV, SHV и т.д.

Кроме деления по возможностям настройки, регуляторы так же делятся по физическим возможностям. Некоторые регуляторы рассчитаны на напряжение питания 12В, в то время как другие поддерживают батареи до 90В. Впрочем, с точки зрения микроконтроллера и его программы, задача одна и та же — переключать ключи по мере вращения ротора. Наиболее очевидное изменение, это детали, которые используются на печатной плате. FET’ы должны быть рассчитаны на более высокое напряжение, что зачастую, означает, что они имеют более высокое сопротивление, а стало быть не так хороши. Блок управления ключами должен иметь возможность поднимать напряжение еще выше и управлять бОльшим количеством ключей. Входные конденсаторы должны быть другими, обычно значительно больше по размеру. Проще говоря, каждый элемент регулятора должен быть проверен на соответствие высокому напряжению. Кроме очевидных вещей с ростом напряжение многое становится несколько более проблемным. Небольшие скачки напряжения при переключении, которые на 12 вольтах не играют никакой роли, с ростом напряжения могут быть достаточно большими, что бы открыть ключ, который не должен быть открыт в данный момент. (Представьте себе, что ключи на верхнем и нижнем уровне открыты в один момент времени — это равносильно короткому замыканию батареи.) Контроллеру требуется дополнительная аккуратность при работе с входным сигналом, что бы все операции проходили правильно.

ВЕС: Battery eliminator circuit (блок исключения батареи)

Другая сложность с высоким напряжением это BEC. Вспоминаются те далекие времена, когда все пользовались двигателями внутреннего сгорания в качестве силовой установки, а для питания бортовой электроники было достаточно небольшой батареи. Когда электрическая тяга и регуляторы стали более популярными, в них стали встраивать небольшой линейный блок питания бортовой электроники — BEC, который создает источник тока напряжением 5В и может заменить батарею бортового питания. Простой BEC отлично работает с сервоприводами, которые не потребляют много тока, и особенно хорошо работает при небольшом напряжении силовой батареи. Проблема обычного BEC в том, что он переводит излишек напряжения в тепло. Если у нас силовая батарея 12В, то от 6В надо избавиться. Если наши сервоприводы потребляют 1А тока, то 6Вт будет переведено в тепло. Если же у нас батарея 25В, то уже 20В надо перевести в тепло и при токе в 1А, мы получим уже 20Вт тепла. Это слишком много для линейного BEC и он просто перестанет работать при такой нагрузке.

Следующим шагом в развитии стало появление импульсных BEC. Импульсные BEC работают аналогично контроллерам, используют FET ключи для быстрого включения и выключения питания от батареи, далее полученные импульсы сглаживаются для получения на выходе постоянного напряжения. Наиболее важное преимущество импульсного BEC это то, что излишек напряжения не переводится в тепло, а КПД может легко достигать 90%.

Выбор правильного контроллера.

Теперь, когда мы знаем несколько больше о том, как работает ESC, нам проще выбрать правильный контроллер для нашего применения. Предположим, что мы уже выбрали мотор и батарею. Теперь нам надо прикинуть, какой ток будет потреблять наша силовая установка. Выбирайте контроллер, который имеет рейтинг выше чем ток полного газа (к примеру если 67А это худший случай, то контроллера на 75А будет достаточно). Стоит сказать, что нет никакой проблемы в том, что бы использовать контроллер, превышающий ваши потребности, если он не утяжеляет вашу модель.

После сборки полезно сделать коротки пробный полет и проверить температуру контроллера, затем сделать более продолжительный полет и проверить температуру еще раз, что бы убедиться, что она не выходит за безопасные рамки. Температура контроллера должна оставаться ниже 85С и регулятор не должен шипеть, если прикоснуться к его корпусу смоченным пальцем. Калькуляторы силовых установок могут ошибаться, и каждый вертолет летает немного по-разному, поэтому дополнительная осторожность при первых полетах не повредит.

Заключение

Как вы видите, контроллеры имеют относительно простую конструкцию, однако хорошее программное обеспечение и качественные компоненты жизненно важны для правильной работы. От правильного выбора контроллера зависит, будет или не будет модель обладать дымовым эффектом, которого вы, возможно, вовсе и не желаете;-). Отдельное спасибо Джонатану Фелдкампу и команде Castle Creations за их вклад в наше хобби.

Дополнение: почему работа на среднем газу менее эффективна и сильнее нагружает контроллер.

Прежде чем мы рассмотрим, почему работа на среднем газу может увеличить потребление тока, нужно кратко рассмотреть явление обратной ЭДС (back EMF-electromotive force). Во время работы мотор не только потребляет энергию, создавая вращение, но и работает как генератор, вырабатывая электроэнергию — обратную ЭДС. (Примечание aarc: Если предположить, что мотор не имеет внутреннего сопротивления, не теряет энергию на трение и вращается без нагрузки, то он будет набирать обороты до тех пор, пока не сравняется напряжение подводимое от батареи и величина обратной ЭДС, после чего потребление тока станет равно нулю, а ротор продолжит вращаться с постоянной скоростью. Если теперь нагрузить мотор, например заставить вращать ротор вертолета, то появится эффект проскальзывания, когда ротор будет вращаться медленнее, чем мог бы при данном напряжении, а величина подводимого тока будет больше чем ток обратной ЭДС. Эта разница токов и совершает полезную работу. (http://en.wikipedia.org/wiki/Brushless_DC_electric_motor) В результате мотор работает с проскальзыванием, из-за того, что часть энергии идет на совершение полезной работы, а часть на преодоление обратного тока, и чем выше нагрузка, тем сильнее проскальзывание и больше тока потребляет мотор.

Работа на среднем газу или в режиме гувернера(тот же средний газ) нагружают контроллер, несмотря на то, что он дает более короткие импульсы питания, тем не менее под нагрузкой ток импульсов увеличивается. При снижении оборотов обратная ЭДС уменьшается и разница токов обратной ЭДС и мгновенных импульсов питания может быть очень большая. Ватт-метры не могут показать эти броски тока, а отображают только средние значения.

Что такое регулятор (контроллер) скорости и для чего он нужен можно почерпнуть из предыдущей статьи про . А сегодня речь пойдет о типичных настройках регулей и способах их изменения.

Настройки регуляторов скорости

  • Brake (тормоз) . Варианты - включен, выключен, иногда также есть "плавный тормоз". При включенном тормозе при убирании газа в ноль регулятор будет принудительно останавливать двигатель, при выключенном - двигатель некоторое время будет продолжать вращаться по инерции.
  • Batterry type (тип батареи) . Варианты - Li-xx, Ni-xx, иногда Li-Fe. Выбор типа аккумулятора между литиевыми (литий-ионные, литий-полимерные) и никелевыми (никель-металлгидридные, никель-кадмиевые). Данный параметр влияет на пороговые напряжения отсечки.
  • Cut off type (тип отсечки) . Варианты - Soft-cut, Cutt-off, иногда также Middle-cut. Тип срабатывания отсечки двигателя при падении напряжения питания - жесткая, когда двигатель просто отрубается сразу, либо мягкая, когда он постепенно снижает обороты.
  • Cut off voltage (напряжение отсечки) . Варианты - Low, Middle, High, либо напрямую напряжение отсечки. Задает порог напряжения при котором происходит отсечка. На этот параметр также влияет выставленный тип аккумуляторов - напряжения отсчки для никелевых аккумуляторов ниже, чем для литиевых. Высокий порог отсечки наименее опасен для аккумулятора, но опасней всего для модели.
  • Start mode (режим старта) . Варианты - Normal, Soft, Very soft. Режим старта мотора. В нормальном режиме мотор сразу раскручивается на полную мощность, при мягком старте - вносится искусственная задержка. Нормальный режим в основном используется для моторов с пропеллерами, мягкий режим - для моторов вертолетов, чтобы не угробить зубцы на пластиковой шестерне.
  • Timing mode (время тайминга) . Варианты - Low, Middle, High. Что такое тайминг я описывал в предыдущем посте - это сдвиг фазы подачи напряжения на обмотки, для разных моторов и условий их работы оптимальное значение может различаться. Обычно его выставляют по наибольшей эффективности работы мотора. Как правило моторы с большим количеством магнитных полюсов требуют выставления более высокого тайминга. При изменении этой настройки нужно обязательно проверять работу мотора в стендовых испытаниях, т. к. при неправильном тайминге есть риск получить срыв синхронизации мотора в определенных условиях.
  • Music (музыка) . У некоторых моделей регуляторов есть возможность выбора нескольких музыкальных мелодий, которые будут проигрываться при включении и самотестировании регулятора. Любопытный нюанс - регуляторы не имеют своего динамика для индикации звуками, они для этой цели используют обмотки подключенного мотора подавая на них переменный ток. Т. е. пищащий регулятор - это на самом деле пищащий мотор. 🙂
  • Li-po cells (количество банок) . Обычно эта настройка есть у регуляторов рассчитанных на работу с многобаночными (больше 4) аккумуляторами. Позволяет жестко задать кол-во банок используемого питающего аккумулятора.
  • Governor mode (режим говернора) . Варианты - включен, выключен. Термин "говернор" пришел к нам из р/у моделей с двигателями внутреннего сгорания, там говернором называют устройство жестко поддерживающее определенные обороты двигателя при заданной ручке газа. Здесь он означает то же самое. Режим говернора обычно используют в CP вертолетах, чтобы двигатель не "проседал" при маневрах.
  • PWM (частота PWM) . Некоторые регуляторы позволяют задать частоту модуляции управляющего сигнала на двигатель. Выбор обычно между 8 и 16 кГц. Большая частота позволяет более точно и плавно регулировать обороты, но снижает КПД регулятора (в этом режиме он больше греется).
  • Reverse (реверс) . Некоторые регуляторы позволяют изменить направление вращение мотора программно. Для тех контроллеров, которые этого не умеют, можно сделать это "железно" поменяв местами любые два провода на мотор.
  • Current limiting (ограничение тока) . Эта настройка также достаточно редка. Она позволяет задать ограничение тока на мотор при котором регулятор отключается.

Это основные настройки. У некоторых специфичных моделей (особенно дорогих), могут быть и другие возможности настроек, которые обычно указываются в инструкции на регулятор.

Способы программирования регуляторов скорости

Вариантов программирования ESC несколько:

  1. Программирование ручкой газа. Этот вариант не требует никаких дополнительных устройств, но он кошмарно неудобен. Смысл в том, что регулятор присоединяется к приемнику, включается при задранном на 100% газе, при этом он переходит в режим программирования и начинает издавать писки. По количеству писков и по паузам между ними определяется какой параметр сейчас изменяется, а движением ручки газа производятся действия по изменению настроек. В общем, это сродни программированию некоторых древних Российских мини-АТС, которые также программировались по телефону на основе гудков и писков. Честно говоря этот способ настолько заморочен и неудобен, что я даже не стал в нем разбираться, потому что есть способ №2.
  2. Программирование контроллеров с помощью карты программирования. Это самый простой и наглядный способ, но для него понадобится приобрести специальное устройство - карту программирования. Стоит она недорого: 5-15$. Беда в том, что для разных производителей регуляторов нужны свои карты программирования. Более того, для различных линеек регуляторов от одного производителя порой нужны различные карты программирования. Для хоббикинговских регуляторов нужны соответственно хоббикинговские карты программирования , они же поддерживают регуляторы фирм H-Wing, OEMRC и Turnigy Speed. Для регуляторов фирмы Hobbywing нужна соответствующая карта, она же программирует RCtimer"овские регуляторы. Как правило, все карты программирования имеют индикаторы для показа текущих установок, несколько кнопок для перемещения между настройками и изменения их, а также кнопку для сохранения настроек. Поэтому процесс программирования в данном случае значительно более простой и удобный, чем с помощью ручки газа, поэтому задумайтесь о приобретении карты программирования, если собираетесь настраивать свои ESC.
  3. Третий способ экзотический - он доступен как правило только для дорогих регуляторов. Это программирование с помощью адаптера USB, или через ИК пульт. В этом случае вместе с устройством идет специальный адаптер (либо он приобретается отдельно), а настройки изменяются с помощью пульта, либо с помощью программы на компьютере. Некоторые регуляторы с программированием через USB имеют весьма продвинутые настройки, например, возможность задать кривую газа непосредственно для регулятора, или загрузить мелодию для проигрывания при старте.

Программирование регулятора с помощью карты программирования

Покажу как программируется регулятор на примере карты для регуляторов Hobbywing, которая также подходит и к регуляторам RCtimer. Для регуляторов со встроенным стабилизатором достаточно просто подключить управляющий шлейф регулятора к разъему "BEC" на карте программирования, затем подключить к регулятору аккумулятор. Через несколько секунд на карте загораются лампочки и показывают текущие настройки.

При программировании регуляторов без стабилизатора питания, или с отключенным проводом питания, необходимо подать на карту программирования питание со стороны. Это можно сделать, например, с приемника, или еще откуда-нибудь. Напряжение питания: 5-6 Вольт. Мне показалось удобней всего использовать для этих целей кассету под АА аккумуляторы с разъемом под приемник, вот эту . В остальном процесс ничем не отличается.

Ну вот, про программирование ESC написал, теперь можно со спокойной совестью программировать свои 6 регуляторов для квадрика. 🙂

Если вы хотя бы раз в процессе использования квадрокоптера задавались вопросам о предназначении той или иной детали — о ESC Motor, например, — то наша статья как раз для вас.

ESC Motor, он же Electric Speed Controller — это контроллер скорости, устанавливаемый на бесколлекторных моторах. Основная задача этой детали — передача энергии от аккумулятора к трехфазному бесколлекторному мотору и преобразование в энергию постоянного тока. Еще одна задача electric speed controller — ограничение тока, который проходит через фазы при коммутации.

Для того, чтобы разобраться с работой контроллера ESC подробнее, стоит сначала подробнее узнать об устройстве мотора, чем мы и займемся в статье ниже.




Как работает бесколлекторный мотор квадрокоптера

Бесколлекторный мотор в своей конструкции имеет три фазы (или обмотки). Условно их называют латинскими буквами А, В и С. Все проводники соединяются в фазы с выводами на конце. На картинке ниже вы можете увидеть два способа соединения:

Процессы, происходящие внутри бесколлекторного двигателя в процессе работы, схожи с реакцией рамки с током под воздействием магнитного поля — той самой, из школьных физических опытов. Рамка при помещении в магнитное поле начинала вращаться, притом совершала это движение не постоянно, а до определенного момента. Для постоянного вращения был необходим переключатель направления тока.

По аналогии с физическим опытом: в бесколлекторном моторе рама — это обмотка (или фазы), а переключатель — электроника, которая в определенные моменты подает постоянное напряжение к нужным фазам стартера.

Для того, чтобы работа двигателя была непрерывной, электроника должна уметь распознавать положение ротора. Делает это она при помощи датчиков — оптических, магнитных, дискретных и так далее. Последние, к слову, используются в большинстве современных моделей.

В бесколлекторном двигателе, имеющем три фазы, установлены три датчика соответственно. Именно благодаря им управляющая электроника всегда имеет точные сведения о положении ротора, и в какой момент и к каким фазам требуется подать напряжение.

Но также среди бесколлекторных двигателей встречаются и такие виды, в устройстве которых датчики не предусмотрены. В таком случае положение ротора электроника определяет, проводя измерение напряжения на обмотке, которая в момент проверки находится не в работе.


Когда датчики не ставят?

Бесколлекторные моторы, имеющие в своей конструкции датчики, о которых речь шла выше, считаются наиболее современными, функциональными и технически оснащенными, но вместе с тем и самыми простыми. Всё это делает их наиболее предпочтительными для установки в радиомодели. Однако в мире нет ничего идеального, поэтому такой подвид двигателя также имеет определенные минусы.

Во-первых, для корректной работы от каждого датчика в двигателе необходимо проложить провод для обеспечения питания. Во-вторых, если хотя бы один из датчиков выйдет из строя, то весь двигатель не сможет работать. В-третьих, замена датчика требует полной разборки всего двигателя, а значит относится к дорогостоящим услугам в сервисном центре.

Двигатели с датчиками преимущественно ставятся в те квадрокоптеры, запуск которых связан с большими нагрузками на вал двигателя.

Если же нагрузки на вал не предусмотрены, то можно использовать и двигатель без датчиков. Такой подвид также используется и в моделях, в которых разместить двигатель с датчиками не позволяет конструкция.

Однако, при установке двигателей такого рода стоит учитывать, что в момент запуска могут происходить колебания или вращения оси двигателя в разные стороны.

Какую характеристику Вы бы хотели улучшить в квадрокоптерах?

Обязательный электронный узел

Возвращаемся к electric speed controller. Нужен этот механизм для регулятора скорости вращения электрического магнитного поля и одновременно с этим — для подачи напряжения на те фазы, на которые необходимо.

Конструкция ESC — микроконтроллер, в который встроена программа и силовые ключи MOSFET.

Характеризуется ESC по максимальному показателю подаваемого от батареи к мотору тока.

Из-за этого нередко начинающие радиолюбители-конструкторы отдают предпочтение регуляторам с высокими показателями запаса тока — это не всегда верно. Так, зачастую можно подобрать контроллер и с меньшим запасом, однако работать он будет лучше. К тому же плюсом будет и меньшая стоимость, и меньший вес.


Но вот чем отличаются контроллеры, так это качеством — нередки, к сожалению, случаи, когда производители экономят даже на термопасте. Из-за халатного отношения к производству регуляторы быстро сгорают. Именно по этой причине, если вы выбираете между двумя ESC с идентичными характеристиками, но различной ценой — отдайте предпочтение более дорогому.

Существует два вида регуляторов скорости: BEC и UBEC. BEC — Battery Eliminator Circuit — регулятор, имеющий в своей конструкции встроенный стабилизатор напряжения. Средний показатель мощности такой модели — 5В, именно ей и обеспечивается питание приемника и многой другой аппаратуры квадрокоптера.

UBEC — Universal Battery Eliminator Circuit — съемный стабилизатор напряжения. Некоторые радиомоделисты в конструировании квадрокоптеров отдают предпочтение именно Universal Battery Eliminator Circuit, так как считают, что этот вариант — более надежный, так как не зависит от температуры регулятора.

UBEC’и также делятся на два типа: импульсные и ионные. В целом они практически идентичны, но первые особенно хороши высоким показателем коэффициента полезной деятельности (который, к слову, растет вместе с ценой на изделие) и меньшим перегревом. Однако в случае с таким видом стабилизатора крайне важно не запараллеливать питание. В работе с ионными стабилизаторами такая установка хоть и не рекомендуется, но всё же допускается.

Микроконтроллер, установленный во всех регуляторах, имеет несколько настраиваемых параметров — тормоз, напряжение, время запуска и его жесткость и так далее.


Калибровка регулятора

Несмотря на то, что калибровка регуляторов зависит от конкретной модели квадрокоптера, на котором этот контроллер используется, есть один метод, общий для всех – настройка и калибровка сразу всех регуляторов.

Стоит отметить, что если у вас квадрокоптер от компании DJI, то вам калибровка не потребуется.

Важное замечание – перед тем, как начинать калибровку контроллеров, откалибруйте радио и подключите регуляторы к моторам.

Перед началом работ всегда убеждайтесь в их безопасности – снимите пропеллеры и отключите квадрокоптер от сети или USB.

Дальнейшие работы будут проходить в несколько этапов.

На первом этапе включите пульт дистанционного управления и выведите стик, отвечающий за подачу мощности, в максимальное положение. Если после подключения литий-полимерного аккумулятора огни на полётной аппаратуре начали циклически загораться красным, синим и желтым, значит, вы всё сделали правильно и APM готов к процедуре калибровки.

На втором этапе, не трогая стик мощности, отключите и снова подключите аккумулятор. Благодаря этой процедуре включится режим калибровки для автопилота. Подтверждением этому будет поочередное мигание красных и синих светодиодных огней, словно на автомобиле полиции.

Только после того, как прозвучит сигнал ровно столько раз, сколько банок имеет ваш аккумулятор (например, для 3S должно быть 3 сигнала), вы сможете убрать стик мощности в минимальное положение.

Если после этого вы услышите однократный, но продолжительный сигнал – значит, процесс калибровки окончен.

В качестве проверки немного поддайте моторам газу – если они начали вращаться, то всё сделано верно.

На третьем этапе совершается выход из режима калибровки регуляторов скорости – для этого стик мощности устанавливается в минимальное положение, а аккумулятор отключается.

Более подробную инструкцию о калибровке контроллеров вы можете посмотреть на видео ниже.

После года зксплуатации накопилась куча сгоревших регуляторов.30 ампер simonk красные (кирпич),и такие желтые
Появился вопрос отремонтировать, или выбросить? А почему не попробовать отремонтировать, итак.

Желтые регуляторы такие

Начинаем диагностику с описания неисправности. Берем последний аппарат коптер сразу видим неадекватное поведение. Или его крутит, или переворачивает. При этом заметил один мотор стартует с запаздыванием. Это назовем первый вариант. Второй вариант при старте один из моторов не крутится, дрыгается так как будто обрыв обмоток. Потрогал пальцами мотор теплый, регулятор просто раскаленый. Третий вариант из регулятора идет дым мотор не крутится. В таком случае выключить сразу не удается, один из транзисторов горит так, что раскаляет печатную плату.
Плато регулятора четырех слойная прогорает насквозь ремонту не подлежит выглядит так
При этом транзистор трескается, отваливаются ножки, горит как сварка, плавит все проводники. Годится только на разборку. Из 5 вольтовых стабилизаторов можно собрать bec на 3 ампера такой, простая схема


Все 4 элемента соединяем параллельно.
Первый вариант рассматривать подробно не будем так как он является частью второго.
Итак, второй вариант. Берем регулятор, срезаем шубу, смотрим
Видим выводы ножек транзисторов. Не разбирая берем тестер, замеряем сопротивление переходов Уже можно сделать выводы средний транзистор исправный назовем вторая фаза, так как в фазе включено 2 транзистора и мы замеряем сопротивление схемы двух транзисторов, первый и третий пробиты, но не полностью транзисторы прогореть не успели, успели выключить, плато не прогорело, можно заняться ремонтом. Сразу упомянем первый вариант:
В случае когда двигатель продолжал работать, неисправным оказалась только первая фаза. Вторя, третья исправны. И еще при старте двигатель пропел песню как то слабо. При работе, на самолетах заметно снижение тяги. Сопротивление переходов такое же.
Отрываем пластину радиатора, приклеена теплопроводным герметиком, или резиновая теплопроводная прокладка стоит.


Очищаем от клея замеряем транзистры первого ряда



Красные, черные стрелки это щупы тестера. 2 ома это проводимость в обе стороны, то есть замыкание, пробой транзистора. Как же тогда звонится исправный транзистор? Исправный проверяется отпаяным от платы. неисправный так:

знак бесконечность это значит обрыв, 2ома замыкание, пробой.
это только один вариант сгоревшего. Может быть пробой всех выводов, или обрыв всех выводов, или проводимость частичная, отличная от исправного.

Еще забыл написать важную информацию. Второй вариант неисправности, когда двигатель не крутился, дрыгался. В выключенном состоянии если пальцами крутить двигатель чувствовалось явное сопротивление, по сравнению с остальными моторами. Объясняется просто. двигатель с магнитами это генератор, при вращении наводится эдс идукции в обмотке, через пробитые фазы ток замыкается, что и создает сопротивление.

Регуляторы оборотов — в англоязычном сообществе называются — Electric Speed Controller (электронный контроллер скорости) или сокращенно — ESC. Основная задача ESC – передача энергии от аккумулятора к бесколлекторному мотору. Потребность в их применении возникла вследствие некоторых особенностей БК — мотора. Вкратце говоря, аккумулятор отдает постоянный ток, а бесколлекторный мотор принимает трехфазный переменный ток.

Принцип работы

Связь с остальными компонентами мультикоптера.

На вход ESC подается напряжение с аккумулятора и сигналы от полетного контроллера, а на выход регулятор отдает управляющее напряжение для привода. Соответственно регулятор должен обеспечивать:

  1. Совместимость с полетным контроллером.
  2. Максимальный ток для мотора (рассчитывается из спецификаций мотора и пропеллера) плюс 20 – 30%.
  3. Потребление тока меньше, чем ток, отдаваемый аккумулятором поделенный на количество ESC.

*Простейшая схема подключения.

Какие регуляторы бывают?

BEC и UBEC

Дополнительно к основной функции, регуляторы оборотов могут так же передавать питание к другим узлам дрона: полетному контроллеру, сервоприводам и так далее. Это достигается внедрением в регулятор блока исключения батареи — Battery Eliminator Circuit (далее как — BEC).

Использование BEC значительно упрощает конструкцию дрона, однако такая схема обладает рядом минусов. Блок исключения батареи может перегреваться при больших перепадах напряжения и больших нагрузках. К тому же регуляторы оборотов с BEC, как правило, стоят дороже, чем регуляторы без блока.

Согласитесь, логичнее и дешевле было бы сделать отдельно ESC и отдельно один BEC. Такое решение есть и называется оно универсальный блок исключения батареи (Universal Battery Eliminator Circuit, далее как — UBEC).

Преимущества UBEC

UBEC — подключается напрямую к аккумулятору и питает нужный узел дрона. Преимущества такого подхода весьма существенны:

  1. Регуляторы оборотов будут меньше перегреваться, поскольку из них будет исключен BEC
  2. UBEC обладают большим коэффициентом полезного действия
  3. Следовательно из предыдущих двух пунктов UBEC способен отдавать больший ток с меньшим риском
  4. Отсутствие переплаты за несколько лишних BEC, располагающихся в ESС. Для некоторых полетных контроллеров крайне не рекомендуется подключать больше одного ESC BEC
  5. Меньший вес регуляторов

Виды BEC и их преимущества

BEC бывают двух видов: линейные (LBEC) и импульсные (SBEC).

  1. Линейный преобразует энергию в тепло, а при перегреве отключается. Что может приводить к неприятным результатам: в лучшем случае коптер не сможет взлететь, а в худшем — неконтролируемое падение. В связи с чем стал применяться в сборке с сервоприводами, которые в свою очередь не потребляют много тока, не позволяя блоку перегреваться.
  2. Импульсный регулирует напряжение быстрым включением и выключением питания, такой подход исключил перегрев, повысил выходную мощность, и позволил достигать КПД 90%, а также импульсные BEC выигрывают у линейных в весе. Возникающие в цепи помехи, которые отрицательно сказываются на работе радио аппаратуры, исключаются добавлением LC — фильтра.

Учитывая то, что многие производители устанавливают на свои UBECLC фильтры (а, если фильтра все-таки нет, то его можно дешево купить и легко установить), профессионалы используют в своих коптерах именно регуляторы SBEC.

Программное обеспечение ESC

Поскольку регулятор оборотов выполняет некоторые преобразования с высокой частотой и может быть настроен на различные режимы работы для него пишут отдельный софт, называемый прошивкой. Это позволяет исправлять прошлые ошибки в алгоритмах управления, создавать более совершенные прошивки (и тем самым, например, уменьшать расходы аккумулятора на среднем газу) и производить гибкие настройки. В коптерах известных компаний типа DJI смена ПО регулятора происходит автоматически при помощи полетного контроллера.

Внимание! Перезапись ПО для регуляторов скорости может повлечь за собой поломки дрона различного характера, а так же снятие с гарантийного обслуживания! Помните, что вы делаете это на свой страх и риск!

Как сменить ПО?

Сменить программное обеспечение регулятора можно несколькими способами:

  1. Используя специальную плату управления
  2. Используя полетный контроллер
  3. Используя ASP программатор

Третий вариант проще и в настоящее время активно внедряется в новые модели.

Выбор регулятора оборотов

Исходя из всего вышеперечисленного, можно выделить особые критерии выбора регулятора оборотов для дрона:

  1. Совместимость с полетным контроллером. Полетный контроллер должен поддерживать BEC и прошивку ESC.
  2. Совместимость со спецификациями мотора и аккумулятора.
  3. Наличие или отсутствие BEС и его тип (LBEC или SBEC).
  4. Теплоотвод и герметичность.

Просмотров