Схема сравнения сигналов 4 20 ма. Унифицированные аналоговые сигналы в системах автоматики. Может ли токовая петля использоваться совместно с цифровыми сигналами

Фундаментальные основы работы токовой петли 4..20 мА

С 1950-х годов токовая петля используется для передачи данных от измерительных преобразователей в процессе мониторинга и контроля. При низкой стоимости реализации, высокой помехоустойчивости и возможности передачи сигналов на большие расстояния, токовая петля оказалась особенно удобной для работы в промышленных условиях. Этот материал посвящен описанию базовых принципов работы токовой петли, основам проектирования, настройке.

Использование тока для передачи данных от преобразователя

Датчики промышленного исполнения часто используют токовый сигнал для передачи данных в отличие, от большинства других преобразователей, таких,например, как термопары или тензорезистивные датчики, которые используют напряжение сигнала. Несмотря на то, что преобразователи,использующие напряжение в качестве параметра передачи информации,действительно эффективно применяются во многих производственных задачах, существует круг приложений, где использование характеристик тока предпочтительнее. Существенным недостатком при использования напряжения для передачи сигналов в промышленных условиях является ослабление сигнала при его передаче на значительные расстояния вследствие наличия сопротивления проводных линий связи. Можно,конечно, использовать высокий входной импеданс устройств, чтобы обойти потери сигнала. Однако, такие устройства будут весьма чувствительны к шуму, которые индуцируют находящиеся поблизости моторы, приводные ремни или радиовещательные передатчики.

Согласно первому закону Кирхгофа сумма токов, втекающих в узел,равна сумме токов, вытекающих из узла.
В теории, ток,протекающий в начале контура,должен достичь его конца в полном объеме,
как показано на рис.1. 1.

Рис.1. В соответствии с первым законом Кирхгофа ток в начале контура равен току в его конце.

Это основной принцип, на котором работает контур измерения.. Измерение тока в любом месте токовой петли (измерительного контура) дает один и тот же результат. Используя токовые сигналы и приемные устройства для сбора данных с низким входным сопротивлением, в промышленных приложениях возможно получить значительный выигрыш от улучшения помехоустойчивости и увеличения длины линии связи.

Компоненты токовой петли
В состав основных компонентов токовой петли входят источник постоянного тока, первичный преобразователь, устройство сбора данных, и провода, соединяющие их в ряд, как показано на рисунке 2.

Рис.2. Функциональная схема токовой петли.

Источник постоянного тока обеспечивает питание системы. Преобразователь регулирует ток в проводах в диапазоне от 4 до 20 мА, где 4 мА представляет собой «живой» ноль, а 20 мА представляет максимальный сигнал.
0 mA (отсутствие тока) означает разрыв в цепи. Устройство сбора данных измеряет величину регулируемого тока. Эффективным и точным методом измерения тока является установка прецизионного резистора- шунта на входе измерительного усилителя устройства сбора данных (на рис.2) для преобразования тока в напряжение измерения, чтобы в конечном итоге получить результат,однозначно отражающий сигнал на выходе преобразователя.

Чтобы помочь лучше понять принцип работы токовой петли, рассмотрим для примера конструкцию системы с преобразователем, имеющую следующие технические характеристики:

Преобразователь используется для измерения давления
Преобразователь расположен в 2000 футов от устройства измерения
Ток,измеряемый устройством сбора данных, обеспечивает оператора информацией о величине давления, приложенного к преобразователю

Рассмотрение примера начнем с подбора подходящего преобразователя.

Проектирование токовой системы

Выбор преобразователя

Первым шаг в проектировании токовой системы является выбор преобразователя. Независимо от типа измеряемой величины (расход, давление, температура, и т.д.) важным фактором в выборе преобразователя является его рабочее напряжение. Только подключение источника питания к преобразователю позволяет регулировать величину тока в линии связи. Значение напряжения источника питания должно находиться в допустимых пределах: больше, чем минимально необходимое,меньше, чем максимальное значение, которое может привести к повреждению преобразователя.

Для токовой системы, рассматриваемой в примере, выбранный преобразователь измеряет давление и имеет рабочее напряжение от 12 до 30 В. Когда преобразователь выбран, требуется правильно измерить токовый сигнал, чтобы обеспечить точное представление о давлении, подаваемом на датчик.

Выбор устройства сбора данных для измерения тока

Важным аспектом, на который следует обратить внимание при построении токовой системы, является предотвращение появления токового контура в цепи заземления. Общим приемом в таких случаях является изоляция. Использовав изоляцию, вы можете избежать влияния контура заземления, возникновение которого поясняет рис.3.

Рис.3. Контур заземления

Заземляющие контуры образуются при двух подключенных терминалов в цепи в разных местах потенциалов. Эта разница приводит к появлению дополнительного тока в линии связи, что может привести к появлению ошибок при измерениях.
Под изоляцией устройства сбора данных понимается электрическое отделение земли источника сигнала от земли входного усилителя измерительного устройства, как показано на рисунке 4.

Поскольку ток не может течь через барьер изоляции, точки заземления усилителя и источника сигнала имеют один и тот же потенциал. Таким образом исключается возможность непреднамеренно создать контур заземления.

Рис.4. Синфазное напряжение и напряжение сигнала в схеме с изоляцией

Изоляция также предотвращает от повреждения устройство сбора данных при наличии больших синфазных напряжений. Синфазным называют напряжение одинаковой полярности,которое присутствует на обоих входах инструментального усилителя. Например, на рис.4. и положительный (+) ,и отрицательный (-) входы усилителя имеют +14 V синфазного напряжения. Многие устройства сбора данных имеют максимальный входной диапазон ±10 В. Если устройство сбора данных не имеет изоляции и синфазное напряжение выходит за максимальный входной диапазон, вы можете повредить устройство. Хотя нормальное (сигнальное) напряжение на входе усилителя на рис.4 составляет только +2 В, добавка +14 в может дать в результате напряжение +16 В
(Сигнальное напряжение - это напряжение между « + » и « - » усилителя, рабочее напряжение есть сумма нормального и синфазного напряжения),что представляет опасный уровень напряжения для устройств сбора с меньшим рабочим напряжением.

При изоляции общая точка усилителя электрически отделена от нуля заземления. В схеме на рисунке 4 потенциал в общей точке усилителя «приподнят» на уровень +14 V. Такой прием приводит к тому, величина входного напряжения падает с 16 до 2 В.Теперь сбора данных, устройства больше не на риск перенапряжения ущерб. (Обратите внимание, что изоляторы имеют максимальную синфазного напряжения они могут отвергнуть.)

После того как устройство сбора данных изолировано и защищено, последним шагом при комплектовании токовой петли является выбор соответствующего источника питания.

Выбор источника питания

Определить, какой источник питания наилучшим образом отвечает вашим требованиям, весьма просто. При работе в токовой петле, блок питания должен выдавать напряжение, равное или большее, чем сумма падений напряжений на всех элементах системы.

Устройство сбора данных в нашем примере использует прецизионной шунт для измерения тока.
Необходимо рассчитать падение напряжения на этом резисторе. Типовой шунтирующий резистор имеет сопротивление 249 Ω. Основные расчеты при диапазоне тока в токовой петле 4 .. 20 мА
показывают следующее:

I*R=U
0,004A*249Ω= 0,996 V
0,02A*249Ω= 4,98 V

С шунта сопротивлением 249 Ω мы можем снять напряжение в диапазоне от 1 до 5 В, увязав величину напряжения на входе устройства сбора данных с величиной выходного сигнала преобразователя давления.
Как уже упоминалось,преобразователь давления требует минимального рабочего напряжения 12 В при максимальным 30 В. Добавив падение напряжения на прецизионном шунтирующем резисторе к рабочему напряжению преобразователя, получаем следующее:

12 В+ 5 В=17 В

На первый взгляд, хватит напряжения 17В.Необходимо,однако, учесть дополнительную нагрузку на блок питания, которую создают провода, имеющее электрическое сопротивление.
В случаях, когда датчик находится далеко от измерительных приборов, вы должны учитывать фактор сопротивления проводов при расчетах токовой петли. Медные провода имеют сопротивление постоянному току, которое прямо пропорционально их длине. С датчиком давления из рассматриваемого примера вам необходимо учесть 2000 футов длины линии связи при определении рабочего напряжения источника питания. Погонное сопротивление одножильного медного кабеля 2.62 Ω/100 футов. Учет этого сопротивления дает следующее:

Сопротивление одной жилы длиной 2000 футов составит 2000*2,62/100= 52,4 м.
Падение напряжения на одной жиле составит0,02* 52,4= 1,048 В.
Чтобы замкнуть цепь,необходимы два провода,тогда длина линии связи удваивается, и
полное падение напряжения составит 2,096 В. В итоге около 2.1 В благодаря тому,что расстояние от преобразователя до вторичного прибора составляет 2000 футов. Просуммировав падения напряжения на всех элементах контура, получим:
2,096 В + 12 В+ 5 В=19,096 В

Если вы использовали 17 V для питания рассматриваемой схемы, то напряжение, подаваемое на преобразователь давления будет ниже минимального рабочего напряжения за счет падения на сопротивлении проводов и шунтирующем резисторе. Выбор типового источник питания 24 В удовлетворит требованиям по питанию для преобразователя. Дополнительно имеется запас напряжения для того, чтобы разместить датчик давления на большем расстоянии.

С выбором правильно подобранных преобразователя, устройства сбора данных, длины кабелей и источника питания разработка простой токовой петли завершена. Для более сложных приложений вы можете включить дополнительные каналы измерений в систему.

Нижний Новгород

Данная статья является продолжением серии публикаций в журнале ИСУП, посвященных нормирующим *, **, *** ****. Статья «Преобразование подобного в подобное в системах измерения и управления» (ИСУП. 2012. № 1) была посвящена нормирующим , которые преобразуют унифицированные сигналы на входе в унифицированные сигналы на выходе.

Почему именно сигнал 4…20 мА?

Широкое распространение токового унифицированного сигнала 4…20 мА объясняется следующими причинами:
- на передачу токовых сигналов не оказывает влияния сопротивление соединительных проводов, поэтому требования к диаметру и длине соединительных проводов, а значит, и стоимость, снижаются;
- токовый сигнал работает на низкоомную (по сравнению с сопротивлением источника сигнала) нагрузку, поэтому наведенные электромагнитные помехи в токовых цепях малы по сравнению с аналогичными цепями, в которых используются сигналы напряжения;
- обрыв линии передачи токового сигнала 4…20 мА однозначно и легко определяется измерительными системами по нулевому уровню тока в цепи (в нормальных условиях он должен быть не меньше 4 мА);
- токовый сигнал 4…20 мА позволяет не только передавать полезный информационный сигнал, но и обеспечивать электропитание самого нормирующего преобразователя: минимально допустимого уровня 4 мА достаточно для питания современных электронных устройств.

Характеристики преобразователей токовой петли 4…20 мА

Рассмотрим основные характеристики и особенности, которые необходимо учитывать при выборе . В качестве примера приведем нормирующие преобразователи НПСИ-ГРТП, выпускаемые научно-производственной фирмой «КонтрАвт» (рис. 2).


Рис. 2. Внешний вид НПСИ-ГРТП - выпускаемых НПФ «КонтрАвт» преобразователей с гальваническим разделением 1, 2, 4 каналов токовой петли

Предназначены для выполнения всего лишь двух основных функций:
- измерение активного токового сигнала 4…20 мА и преобразование его в такой же активный токовый сигнал 4…20 мА с коэффициентом преобразования 1 и с высоким быстродействием;
- гальваническое разделение входных и выходных сигналов токовой петли.

Основная погрешность преобразования НПСИ-ГРТП составляет 0,1 %, температурная стабильность - 0,005 % / °C. Рабочий диапазон температур - от -40 до +70 °C. Напряжение изоляции - 1500 В. Быстродействие - 5 мс.

Варианты подключения к источникам активных и пассивных сигналов показаны на рис. 3 и 4. В последнем случае требуется дополнительный источник питания.



Рис. 3. Подключение преобразователей НПСИ-ГРТП к активному источнику


Рис. 4. Подключение преобразователей НПСИ-ГРТП к пассивному источнику с применением дополнительного блока питания БП

В системах измерения, где необходимо разделение входных сигналов, источником входного сигнала, как правило, являются измерительные датчики (ИД), а приемниками - вторичные измерительные приборы (ИП) (регуляторы, контроллеры, регистраторы и пр.).

В системах управления, где требуется разделение выходных сигналов, источниками являются управляющие устройства (УУ) (регуляторы, контроллеры, регистраторы и пр.), а приемниками - исполнительные устройства (ИУ) с токовым управлением (мембранные исполнительные механизмы (МИМ), тиристорные регуляторы, частотные преобразователи и пр.).

Примечательно, что для преобразователя НПСИ-ГРТП, выпускаемого , не требуется отдельное питание. Он запитывается от входного активного источника тока 4…20 мА. При этом на выходе также формируется активный сигнал 4…20 мА, и дополнительного источника в выходных цепях не требуется. Поэтому решение на базе разделителей токовой петли, которое используется в НПСИ-ГРТП, является весьма экономичным.

Выпускаются три модификации преобразователя: . Они различаются по количеству каналов (1, 2, 4 соответственно) и конструктивному исполнению (рис. 2). Одноканальный преобразователь размещен в малогабаритном узком корпусе шириной всего 8,5 мм (габариты 91,5 × 62,5 × 8,5 мм), двухканальный и четырехканальный - в корпусе шириной 22,5 мм (габариты 115 × 105 × 22,5 мм). Преобразователи с гальванической развязкой применяются в системах с десятками и сотнями сигналов, для этих систем размещение такого количества преобразователей в конструктивных оболочках (шкафах) становится важнейшей проблемой. Ключевым фактором здесь является ширина одного канала преобразования вдоль DIN-рельса. в 1-, 2‑ и 4‑канальном исполнениях имеют предельно малую «ширину канала»: 8,5, 11,25 и 5,63 мм соответственно.

Следует обратить внимание, что в многоканальных модификациях НПСИ-ГРПТ2 и НПСИ-ГРТП4 все каналы полностью не связаны между собой. С этой точки зрения работоспособность одного из каналов никак не влияет на работу других каналов. Вот почему один из аргументов против многоканальных преобразователей - «сгорает один канал, а перестает работать весь многоканальный прибор, и это резко понижает безопасность и устойчивость системы» - не работает. Зато такое важное положительное свойство многоканальных систем, как более низкая «цена канала», проявляется в полной мере. Двух- и четырехканальные модификации преобразователей снабжены винтовыми разъемными соединителями, которые облегчают их монтаж, техническое обслуживание и ремонт (замену).

В ряде задач требуется подать сигнал 4…20 мА на несколько гальванически изолированных приемников. Для этого можно применить как одноканальные преобразователи НПСИ-ГРТП1, так и многоканальные НПСИ-ГРТП2 и НПСИ-ГРТП4. Схемы соединения приведены на рис. 5.



Рис. 5. Применение одноканальных и двухканальных преобразователей для размножения сигнала «1 в 2»

Для удобства монтажа и обслуживания подключение внешних соединений в одноканальной модификации производится пружинными клеммными соединителями, а в двух- и четырехканальных - разъемными винтовыми соединителями.



Рис. 6. Подключение внешних линий с помощью разъемных клеммных соединителей

Таким образом, новую линейку преобразователей для разделения токовой петли 4…20 мА, представленную НПФ «КонтрАвт», можно вполне обоснованно назвать компактным и экономичным решением, способным конкурировать по совокупности характеристик с соответствующими импортными аналогами. Преобразователи предоставляются в опытную эксплуатацию, поэтому пользователь имеет возможность опробовать устройства в работе, оценить их характеристики и принять взвешенное решение о целесообразности их применения.
____________________________

Юрий Курцевой (Maxim Integrated)

Высокоинтегрированный аналоговый формирователь сигнала токовой петли 4-20 мА MAX 12900 производства Maxim Integrated может конвертировать ШИМ сигнал микроконтроллера, который не обладает встроенным ЦАП, в сигнал петли 4 20мА для двух- , трех- или четырех проводных конфигураций .

Токовая петля 4…20 мА на сегодняшний день является одним из наиболее популярных методов передачи данных во многих отраслях промышленности. Благодаря своей устойчивости к помехам при передаче сигнала от передатчика к приемнику она идеально подходит для таких задач. Другое преимущество – относительная простота и бюджетность метода. Хотя, конечно, необходимость контроля за падением напряжения в некоторых участках цепи и за рядом других параметров часто приводит к усложнению схемы и увеличению стоимости решения. В таблице 1 обобщаются преимущества и недостатки метода передачи данных на основе токовой петли 4…20 мА.

Таблица 1. Преимущества и недостатки токовой петли 4…20 мА

Преимущества Недостатки
Основной стандарт во многих отраслях промышленности Одной токовой петле соответствует только один канал передачи данных
Возможность передачи значения только одной переменной
Простота в подключении и настройке Для одновременной работы нескольких каналов данных (для передачи значений нескольких переменных) требуется создать столько же токовых петель. Но использование большого количества проводов может приводить к проблемам с контурами заземления, если независимые петли не изолированы должным образом.
Сигнал не деградирует с увеличением дистанции Проблемы, связанные с изоляцией каналов, возрастают с увеличением количества каналов
Меньшая чувствительность к помехам
Отсутствие тока указывает на ошибку в канале передачи данных

Все датчики с интерфейсом 4…20 мА, в зависимости от конфигурации, могут быть разделены на три группы:

  1. двухпроводной (питаемый петлей) датчик 4…20 мА;
  2. трехпроводной датчик 4…20 мА;
  3. четырехпроводной датчик 4…20 мА.

Наиболее удобной конфигурацией является решение, питаемое петлей. Однако если сам датчик потребляет более 3…4 мА из бюджета петли 4…20 мА, то для его функционирования придется использовать дополнительный источник питания. При подключении таких датчиков придется использовать 4-проводную конфигурацию. 3-проводная конфигурация является упрощенной версией предыдущей, в которой объединен положительный вывод питания датчика с токовой петлей (рисунок 1б). На рисунке 1 показаны все описанные выше конфигурации. В таблице 2 приводятся преимущества и недостатки каждого из них.

Таблица 2. Преимущества и недостатки датчиков с разными схемами подключения

Конфигурация 2-проводная 3-проводная 4-проводная
Преимущества Не нужен локальный блок питания; малая стоимость; подходит для работы в агрессивных условиях Экономичнее варианта с четырьмя проводами; простота реализации; возможность использования устройств индикации и других устройств, требующих дополнительного питания; возможность использовать мощные выходы, реле Внешнее питание; возможность передавать переменный сигнал; изоляция цепи питания; возможность использования устройств индикации и других устройств, требующих дополнительного питания; возможность использовать мощные выходы, реле
Недостатки Падение напряжения на участках петли может вызвать проблемы; имеются ограничения по потреблению схемы Отсутствие изоляции петли питания; линии питания и петли нужно реализовывать с осторожностью Более высокая стоимость; больше проводов; неприменим в агрессивной среде эксплуатации

Применение MAX12900 в схемах датчиков с 2-, 3- или 4-проводными конфигурациями токовой петли

MAX12900 – это высокоинтегрированный аналоговый формирователь сигнала с ультрамалым потреблением для датчиков с передатчиком 2…20 мА. В его компактный корпус встроено 10 модулей:

  • LDO-преобразователь с широким входным диапазоном напряжений;
  • цепи обработки ШИМ-модулированных сигналов для двух входов;
  • два малопотребляющих операционных усилителя с малым дрейфом;
  • один операционный усилитель с малым дрейфом напряжения смещения и широкой полосой пропускания;
  • два диагностических компаратора;
  • контроллер включения с выходом индикации хорошего качества питания (power-good выход);
  • источник опорного напряжения с малым дрейфом.

Ключевое преимущество MAX12900 в том, что он может конвертировать ШИМ-сигнал микроконтроллера, который не обладает встроенным ЦАП, в сигнал петли 4…20мА для двух-, трех- или четырехпроводных конфигураций. Таким образом он является эквивалентом совокупности малопотребляющего ЦАП с высоким разрешением, обработчика ШИМ-сигнала, двух цепей обработки и активного фильтра с интегрированным малопотребляющим операционным усилителем. Две цепи обработки сигналов обеспечивают стабильную ШИМ-амплитуду, несмотря на колебания амплитуды сигнала, изменения температуры и напряжения питания. Усилитель с широкой полосой пропускания в сочетании с дискретным транзистором преобразует входное напряжение в выходной ток и позволяет использовать HART® и FOUNDATION Fieldbus H1 модуляцию сигнала. Благодаря ОУ с малым напряжением смещения и источнику опорного напряжения с низким дрейфом обеспечивается минимальный уровень ошибки в широком диапазоне температур. Малопотребляющий ОУ и компараторы являются блоками для создания продвинутых диагностических систем. Мониторинг шины питания, измерение выходного тока и детектирование разрыва цепи – вот некоторые примеры диагностических возможностей таких систем. Все это, наряду с высокой точностью и малым общим потреблением делает MAX12900 идеальным устройством для интеллектуальных датчиков с интерфейсом токовая петля.

Применение MAX12900 в качестве 2-проводного передатчика (питание через токовую петлю)

На рисунке 2 показана упрощенная блок-схема и модель того, как MAX12900 может быть сконфигурирован в качестве части датчика с питанием через петлю. Такая конфигурация требуется для систем, работающих в агрессивных средах, она должна соответствовать директиве ATEX Directive 94/9/EC и получить сертификат IECEx. Такая реализация схемы датчика возможна только в случаях, когда передатчик потребляет менее 4 мА. ШИМ-сигналы, генерируемые микроконтроллером, поступают на специальные цепи нормирования и обработки ШИМ-сигнала, встроенные в MAX12900. С использованием одного из встроенных операционных усилителей и внешней RC-цепи можно создать фильтр низких частот. Для конвертирования напряжения в ток используются внешние транзисторы.

На рисунке 3 показана реализация на уровне электрической принципиальной схемы двухпроводной токовой петли, питающей сенсор (обратите внимание, что весь выделенный бирюзовым цветом блок интегрирован в MAX12900).

Одни из наиболее распространенных датчиков такого типа – это датчики температуры. Давайте попробуем спроектировать передатчик датчика температуры на базе MAX12900 с применением прецизионной термопары и специализированного преобразователя сигнала термопары (MAX31856). MAX31856 обрабатывает сигнал с термопары и передает данные по интерфейсу SPI. Таким образом, чтобы считывать показания с датчика и генерировать ШИМ-сигналы для MAX12900, необходимо использовать микроконтроллер. В отладочном комплекте MAX12900EVKIT для этой задачи применяется микроконтроллер STM32L071 . Ключевой момент в такой схеме – оценить бюджет по потребляемой мощности для наихудших сценариев (максимальные потребления тока для всех рабочих значений температуры и напряжения). На основе этого можно принять решение о применении той или иной конфигурации токовой петли: двух-, трех- или четырехпроводной.

В соответствии с техническим описанием MAX12900EV, общее потребление малопотребляющего микроконтроллера и MAX12900 составляет 3,5 мА для худшего случая. MAX31856 потребляет максимум 2 мА при напряжении питания 3,3 В (таблица 3). Таким образом общее потребление превышает 4 мА, а это значит, что реализовать двухпроводной передатчик не представляется возможным.

Таблица 3. Потребление компонентов датчика температуры

Применение MAX12900 в схеме трехпроводного передатчика

Исключив возможность использовать двухпроводное решение, посмотрим, какова возможность проектирования трехпроводной схемы. Первое, что следует иметь в виду – это возможность применения только одного положительного вывода питания и для передачи данных, и для питания схемы. Напряжение 24 В (от ПЛК) является слишком высоким для микроконтроллера и MAX31856, для работы которых требуется напряжение 3,3 В. Существует несколько подходов решения этой проблемы. Первый – это использовать для преобразования 24 В в 3,3 В DC/DC-преобразователь, например, MAX17550 , как это изображено на рисунке 4. MAX17550 является ультракомпактным синхронным понижающим DC/DC-преобразователем с высоким КПД и выходным током до 25 мА. Для изоляции датчика/МК ШИМ-интерфейса с MAX12900 используется цифровой двухканальный изолятор MAX12930 . На рисунке 4 компоненты в пунктирном квадрате находятся в изолированным домене питания с плавающей землей, которая отличается от земли ПЛК.

Другой подход к решению проблемы с питанием – использовать линейный преобразователь напряжения с ультрамалым током покоя MAX15006AATT+ , который может обеспечить напряжение 3,3 В с током нагрузки до 50 мА, как это показано на рисунке 5.

Вторая проблема, о которой нужно помнить при разработке таких датчиков – плавающая земля передатчика. Датчик сам по себе, микроконтроллер и MAX12900 – передатчик для обмена данными – должны иметь общую шину земли. В то же самое время потенциал этой земли является плавающим потенциалом по отношению к земле ПЛК. Состояние плавающей земли зависит от передаваемых данных и уровня нагрузки петли. Для решения этой проблемы применяются несколько подходов, например использование двухканального малопотребляющего MAX12930 (как показано на рисунке 4) для изоляции PWMA- и PWMB-входов от передатчика.

Альтернативный подход заключается в том, чтобы использовать активную схему, которая занимается постоянным мониторингом и управляет общим уровнем земли микроконтроллера и датчика. Такой вариант реализации становится возможным и удобным благодаря присутствию ОУ общего назначения, а именно – OP2, интегрированного в MAX12900. Для этой схемы также требуется использовать внешний n-канальный MOSFET-транзистор с малым напряжением управления Q3 и PNP-транзистор общего назначения Q4, чтобы согласовать падения напряжения на RLOAD и RSENSE.

Применение MAX12900 в схемах с четырехпроводным передатчиком

Мы рассмотрели, как MAX12900 может быть применен в двух- и трехпроводных передатчиках. Реализация четырехпроводного решения по сравнению с ними очень проста, поскольку для датчика и ПЛК имеются отдельные контуры питания и земли.

Заключение

Ультрамалопотребляющий аналоговый формирователь сигнала MAX12900 производства компании Maxim Integrated для передатчиков 4…20 мА предлагает непревзойденный уровень гибкости в различных приложениях и идеально подходит для использования в промышленных датчиках для систем контроля и автоматизации, сигналы которых необходимо преобразовать в сигнал токовой петли 4…20 мА.

Нижний Новгород

Данная статья является продолжением серии публикаций в журнале ИСУП, посвященных нормирующим *, **, *** ****. Статья «Преобразование подобного в подобное в системах измерения и управления» (ИСУП. 2012. № 1) была посвящена нормирующим , которые преобразуют унифицированные сигналы на входе в унифицированные сигналы на выходе.

Почему именно сигнал 4…20 мА?

Широкое распространение токового унифицированного сигнала 4…20 мА объясняется следующими причинами:
- на передачу токовых сигналов не оказывает влияния сопротивление соединительных проводов, поэтому требования к диаметру и длине соединительных проводов, а значит, и стоимость, снижаются;
- токовый сигнал работает на низкоомную (по сравнению с сопротивлением источника сигнала) нагрузку, поэтому наведенные электромагнитные помехи в токовых цепях малы по сравнению с аналогичными цепями, в которых используются сигналы напряжения;
- обрыв линии передачи токового сигнала 4…20 мА однозначно и легко определяется измерительными системами по нулевому уровню тока в цепи (в нормальных условиях он должен быть не меньше 4 мА);
- токовый сигнал 4…20 мА позволяет не только передавать полезный информационный сигнал, но и обеспечивать электропитание самого нормирующего преобразователя: минимально допустимого уровня 4 мА достаточно для питания современных электронных устройств.

Характеристики преобразователей токовой петли 4…20 мА

Рассмотрим основные характеристики и особенности, которые необходимо учитывать при выборе . В качестве примера приведем нормирующие преобразователи НПСИ-ГРТП, выпускаемые научно-производственной фирмой «КонтрАвт» (рис. 2).


Рис. 2. Внешний вид НПСИ-ГРТП - выпускаемых НПФ «КонтрАвт» преобразователей с гальваническим разделением 1, 2, 4 каналов токовой петли

Предназначены для выполнения всего лишь двух основных функций:
- измерение активного токового сигнала 4…20 мА и преобразование его в такой же активный токовый сигнал 4…20 мА с коэффициентом преобразования 1 и с высоким быстродействием;
- гальваническое разделение входных и выходных сигналов токовой петли.

Основная погрешность преобразования НПСИ-ГРТП составляет 0,1 %, температурная стабильность - 0,005 % / °C. Рабочий диапазон температур - от -40 до +70 °C. Напряжение изоляции - 1500 В. Быстродействие - 5 мс.

Варианты подключения к источникам активных и пассивных сигналов показаны на рис. 3 и 4. В последнем случае требуется дополнительный источник питания.



Рис. 3. Подключение преобразователей НПСИ-ГРТП к активному источнику


Рис. 4. Подключение преобразователей НПСИ-ГРТП к пассивному источнику с применением дополнительного блока питания БП

В системах измерения, где необходимо разделение входных сигналов, источником входного сигнала, как правило, являются измерительные датчики (ИД), а приемниками - вторичные измерительные приборы (ИП) (регуляторы, контроллеры, регистраторы и пр.).

В системах управления, где требуется разделение выходных сигналов, источниками являются управляющие устройства (УУ) (регуляторы, контроллеры, регистраторы и пр.), а приемниками - исполнительные устройства (ИУ) с токовым управлением (мембранные исполнительные механизмы (МИМ), тиристорные регуляторы, частотные преобразователи и пр.).

Примечательно, что для преобразователя НПСИ-ГРТП, выпускаемого , не требуется отдельное питание. Он запитывается от входного активного источника тока 4…20 мА. При этом на выходе также формируется активный сигнал 4…20 мА, и дополнительного источника в выходных цепях не требуется. Поэтому решение на базе разделителей токовой петли, которое используется в НПСИ-ГРТП, является весьма экономичным.

Выпускаются три модификации преобразователя: . Они различаются по количеству каналов (1, 2, 4 соответственно) и конструктивному исполнению (рис. 2). Одноканальный преобразователь размещен в малогабаритном узком корпусе шириной всего 8,5 мм (габариты 91,5 × 62,5 × 8,5 мм), двухканальный и четырехканальный - в корпусе шириной 22,5 мм (габариты 115 × 105 × 22,5 мм). Преобразователи с гальванической развязкой применяются в системах с десятками и сотнями сигналов, для этих систем размещение такого количества преобразователей в конструктивных оболочках (шкафах) становится важнейшей проблемой. Ключевым фактором здесь является ширина одного канала преобразования вдоль DIN-рельса. в 1-, 2‑ и 4‑канальном исполнениях имеют предельно малую «ширину канала»: 8,5, 11,25 и 5,63 мм соответственно.

Следует обратить внимание, что в многоканальных модификациях НПСИ-ГРПТ2 и НПСИ-ГРТП4 все каналы полностью не связаны между собой. С этой точки зрения работоспособность одного из каналов никак не влияет на работу других каналов. Вот почему один из аргументов против многоканальных преобразователей - «сгорает один канал, а перестает работать весь многоканальный прибор, и это резко понижает безопасность и устойчивость системы» - не работает. Зато такое важное положительное свойство многоканальных систем, как более низкая «цена канала», проявляется в полной мере. Двух- и четырехканальные модификации преобразователей снабжены винтовыми разъемными соединителями, которые облегчают их монтаж, техническое обслуживание и ремонт (замену).

В ряде задач требуется подать сигнал 4…20 мА на несколько гальванически изолированных приемников. Для этого можно применить как одноканальные преобразователи НПСИ-ГРТП1, так и многоканальные НПСИ-ГРТП2 и НПСИ-ГРТП4. Схемы соединения приведены на рис. 5.



Рис. 5. Применение одноканальных и двухканальных преобразователей для размножения сигнала «1 в 2»

Для удобства монтажа и обслуживания подключение внешних соединений в одноканальной модификации производится пружинными клеммными соединителями, а в двух- и четырехканальных - разъемными винтовыми соединителями.



Рис. 6. Подключение внешних линий с помощью разъемных клеммных соединителей

Таким образом, новую линейку преобразователей для разделения токовой петли 4…20 мА, представленную НПФ «КонтрАвт», можно вполне обоснованно назвать компактным и экономичным решением, способным конкурировать по совокупности характеристик с соответствующими импортными аналогами. Преобразователи предоставляются в опытную эксплуатацию, поэтому пользователь имеет возможность опробовать устройства в работе, оценить их характеристики и принять взвешенное решение о целесообразности их применения.
____________________________

При автоматизации технологических процессов используются различные датчики и исполнительные устройства. И те и другие так или иначе связаны с контроллерами или модулями ввода/вывода, которые получают от датчиков измеренные значения физических параметров и управляют исполнительными устройствами.

Представьте, что все устройства, присоединяемые к контроллеру имели бы различные интерфейсы — тогда производителям пришлось бы «плодить» огромное количество модулей ввода-вывода, а для того, чтобы заменить, например, неисправный датчик, нужно было бы искать точно такой же.

Именно поэтому, в системах промышленной автоматики принято унифицировать интерфейсы различных устройств.

В этой статье мы расскажем об унифицированных аналоговых сигналах. Поехали!

Унифицированные аналоговые сигналы

С аналоговыми сигналами мы имеем дело при измерении любых физических величин (температуры, влажности, давления и т.д.), а так же при непрерывном управлении исполнительными устройствами (регулирование скорости вращения двигателя с помощью преобразователя частоты; управление температурой с помощью нагревателя и т.д.).

Во всех перечисленных и им подобных случаях используются аналоговые (непрерывные) сигналы.

В контроллерном оборудовании в подавляющем большинстве случаев используются два типа аналоговых сигналов: токовый 4-20 мА и сигнал напряжения 0-10 В.

Унифицированный сигнал напряжения 0-10 В

При использовании этого типа сигнала для получения информации с датчика весь его (датчика) диапазон делится на диапазон напряжения 0-10 В. Например, датчик температуры имеет диапазоны -10…+70 °С. Тогда при -10 °С на выходе датчика будет 0 В, а при +70 °С — 10 В. Все промежуточные значения находятся из пропорции.

Это же верно для любого другого устройства. Например, если аналоговый выход частотного преобразователя настроен на передачу текущей скорости вращения двигателя — тогда 0 В у него на выходе означает, что двигатель остановлен, а 10 В, что двигатель крутится на максимальной частоте.

Управление сигналом 0-10 В

С помощью унифицированного сигнала напряжения можно не только получать данные о физических величинах, но и управлять устройствами. Например, можно привести в нужное положение, изменить скорость вращения электродвигателя через частотный преобразователь или мощность нагревателя.

Возьмём для примера электродвигатель, частотой вращения которого управляет частотный преобразователь.

Частоту вращения двигателя задаёт контроллер сигналом 0-10 В, приходящим на аналоговый вход частотника.Частота вращения двигателя двигателя может быть от 0 до 50 Гц. Тогда, если в соответствии с алгоритмом контроллер собирается раскрутить двигатель на 25 Гц, он должен подать на вход частотника 5В.

«Токовая петля»: унифицированный аналоговый сигнал 4-20 мА

Аналоговый сигнал 4-20 мА (ещё называют «токовая петля») так же как сигнал напряжения 0-10 В используется в автоматике для получения информации от датчиков и управления различными устройствами.

По сравнению с сигналом 0-10 В сигнал 4-20 мА имеет ряд преимуществ:

  • Во-первых, токовый сигнал можно передать на большие расстояния в сравнении с сигналом 0-10 В, в котором происходит падение напряжения на длинной линии, обусловленное сопротивлением проводников.
  • Во-вторых, легко диагностировать обрыв линии, т.к. рабочий диапазон сигнала начинается от 4 мА. Поэтому если на входе 0 мА — значит на линии обрыв.

Управление сигналом 4-20 мА

Управление различными устройствами с помощью токового сигнала ничем не отличается от управления с помощью сигнала напряжения. Только в данном случае нужен уже источник не напряжения, а тока.

Если устройство имеет управляющий вход 4-20 мА, то таким устройством может управлять контроллер или другое интеллектуальное устройство, имеющее соответствующий выход.

Например, мы хотим плавно открывать вентиль, имеющий электропривод со входом 4-20 мА. Если подать на вход сигнал тока 4 мА, тогда вентиль будет полностью закрыт, а если подать 20 мА — полностью открыт.

Активный и пассивный аналоговый выход 4-20 мА

Зачастую аналоговый выход датчика, контроллера или другого устройства — пассивный, то есть не может являться источником тока без внешнего питания. Поэтому при проектировании схемы автоматики нужно внимательно изучить характеристики аналоговых выходов используемых устройств, и если они пассивные — добавить в схему внешний источник питания для пропитки токовой петли.

На рисунке представлена схема подключения датчика с выходом 4-20 мА к измерителю-регулятору с соответствующим входом. Поскольку выход датчика пассивный — требуется его пропитка внешним блоком питания.

При измерении физической величины (температуры, влажности, загазованности, pH и др.) датчики преобразуют её значение в ток, напряжение, сопротивление, ёмкость и т.д. (в зависимости от принципа работы датчика). Для того, чтобы привести выходной сигнал датчика к унифицированному сигналу используют нормирующие преобразователи.

Нормирующий преобразователь — устройство, приводящее сигнал первичного преобразователя к унифицированному сигналу тока или напряжения.

Так выглядит датчик температуры с нормирующим преобразователем:

Просмотров