Пожары из-за неисправной электропроводки. Действия при возгорании электропроводки Пожар в результате замыкания электропроводки

Стремительная электрификация жилых зданий обязывает более внимательно анализировать электроустановку (электропроводку, электроприборы, защитную и коммутационную аппаратуру) с точки зрения опасности возникновения пожара. В данной статье рассмотрим условия, при которых короткое замыкание действительно может стать причиной пожара.

Нормативные требования

В соответствии с ПУЭ, электрическую сеть напряжением до 1 кВ в жилых, общественных, административных и бытовых зданиях требуется защищать от токов короткого замыкания и токов перегрузки.

ПУЭ-7
3.1.10
Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.
Кроме того, должны быть защищены от перегрузки сети внутри помещений:
осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно¬бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах.

3.1.11
В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:
80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), – для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) – для проводников всех марок.

Рис. 1. Характерная схема электроснабжения жилого здания

Схема электроснабжения

Рассмотрим характерную схему (рис. 1), где источником электроснабжения служит, как правило, отдельно стоящая подстанция с распределительным щитом 10(6)/0,4/0,23 кВ. На вводе в здание ВРУ-0,4/0,23 кВ. Следующая ступень – это этажный групповой распределительный щиток, и последняя ступень – это квартирный . Вышеперечисленные распределительные устройства подключены между собой проводниками, минимально допустимые сечения которых указаны в требованиях ПУЭ. Номинальные токи аппаратов, которые защищают провода и кабели от токов коротких замыканий и от перегрузки, выбираются в соответствии с требованиями ПУЭ.

Условия возгорания электропроводки

Возникает вопрос, может ли при коротком замыкании произойти возгорание электропроводки, если выполнены вышеперечисленные и другие требования ПУЭ? Рассматривая данный вопрос, необходимо обратить внимание на то, что возгорание электропроводки происходит при достижении проводником определенной температуры, зависящей от типа изоляции кабеля. В настоящее время широко применяется , у которого эта температура равна: Q = 350 O С.
Изменение температуры проводника при протекании тока короткого замыкания описывается формулами, которые приведены в . С учетом некоторых особенностей, а именно кратковременности протекания тока короткого замыкания, о чем будет рассказано далее, в рассматриваемых случаях для проводников с медными жилами можно использовать нижеследующую формулу:

где Q кон. и Q нач. – соответственно конечная и начальная температуры токоведущей жилы проводника, О С;
к – показатель степени:

(1а)

где t – время протекания тока короткого замыкания, с;
S – сечение проводника, мм 2 ;
– интеграл Джоуля или тепловой импульс, кА 2 /с.

В общем случае ток короткого замыкания содержит периодическую и апериодическую составляющие, т.е.:

Однако, как показывает анализ, влияние апериодической составляющей в данном случае невелико ввиду её быстрого затухания (постоянная времени затухания Т 0,003 с). В результате интегрирования на интервале времени действия защитной аппаратуры (0 — 0,02 с) получим:

где I д – действующее значение периодической составляющей тока короткого замыкания.
Тогда формула (1а) примет вид:

(4)

Из вышеперечисленных формул видим, что предельные значения токов короткого замыкания, при которых возгорание проводника не произойдет, зависят от его сечения и времени отключения короткого замыкания.


Рис. 2 (а). Времятоковые характеристики автоматических выключателей типа LSN


Рис. 2 (б). Времятоковые характеристики автоматических выключателей типа С 60а Merlin Gerin

Граничные значения токов короткого замыкания и минимально допустимые значения токов КЗ

Проводя анализ защитных времятоковых характеристик автоматических выключателей (рис. 2), мы наблюдаем две области: работа отсечки, предназначенной для отключения токов короткого замыкания, и работа тепловых расцепителей, предназначенных для защиты от перегрузки. Время действия отсечки измеряется сотыми и даже тысячными долями секунды, а время действия защиты от перегрузки измеряется от нескольких секунд до нескольких минут. Понятно, что короткие замыкания должны отключаться отсечкой автоматического выключателя как можно быстрее. Если короткое замыкание будет отключаться медленнее действующей тепловой защиты, то неминуемо произойдет повреждение соседних проводников горящей дугой, на которых вследствие этого также произойдут короткие замыкания. При этом возникновение пожара неминуемо.
Исходя из требований чувствительности, можно определить минимальные значения токов КЗ, при которых будет надежно срабатывать отсечка автоматических выключателей:

I кзмин. = I ном · 2 · 5,

где I ном – номинальный ток автомата;
2 – коэффициент надежности;
5 – кратность тока срабатывания отсечки.



Для определения максимально допустимых значений токов КЗ, при которых в электропроводке возгорание ещё не произойдет, используем формулы (1) и (2).
Примем начальную температуру проводника Q нач. = 30 O С. В качестве конечной требуется принять такую, при которой изоляция электропроводки ещё не теряет своих свойств и позволяет осуществлять дальнейшую эксплуатацию. Для кабелей и проводов с пластмассовой изоляцией эта температура находится в диапазоне 160 — 250 О С . Примем среднее значение Q кон. = 200 О С:

Важную роль играет время срабатывания электромагнитных расцепителей автомата при КЗ. ГОСТ Р 50345­99 , а также аналогичные зарубежные документы, к сожалению, содержат лишь требование о том, что время действия автоматических выключателей в начальной зоне отсечки (время мгновенного расцепления) должно быть менее 0,1 с. Однако из каталожных времятоковых характеристик автоматов следует, что на самом деле время срабатывания выключателей намного меньше. Так, для автоматов типа LSN и С 60а это время не превышает 20 мс, а при больших кратностях тока короткого замыкания ещё меньше (рис. 2а и 2б). При времени отключения 20 мс предельно допустимое значение тока КЗ для медного проводника сечением 1,5 мм 2 составит:

Задаваясь регламентированными ПУЭ минимально допустимыми значениями сечений медных проводников на разных ступенях системы электроснабжения (табл. 7.1.1), можно аналогичным образом определить максимальные и минимальные значения тока на других ступенях системы электроснабжения. Результаты расчетов приведены в табл. 1.


Табл. 1. Граничные значения тока КЗ на различных ступенях системы электроснабжения

Следует ещё раз подчеркнуть, что максимально допустимые значения тока КЗ в значительной мере зависят от быстродействия автоматического выключателя при КЗ.

Если необходимо определить минимально допустимое сечение кабеля или провода при заданном токе короткого замыкания и времени его отключения, то можно использовать формулу:

Влияние перегрузки проводников

В большинстве случаев, перегрузка электрической сети в жилом секторе может возникнуть при использовании дополнительных обогревательных электроприборов в холодное время года, в период аварий в системе водяного отопления и т.п. Несмотря на то, что внутренние электросети жилых, общественных, административных и бытовых зданий должны быть защищены от перегрузки, в соответствии с требованиями ПУЭ, однако же защитные аппараты допускают некоторую перегрузку проводников. Это связано с тем, что надежное срабатывание предохранителей происходит при токах, превышающих 1,6I ном, а автоматов – 1,45I ном.
Если, например, автомат выбран на основании требований ПУЭ, т.е. его номинальный ток равен длительно допустимому току проводника, то последний может длительно работать с нагрузкой 145% I доп., при этом его температура может достигать:

Q р = Q о + (Q д – Q р) · (I пред / I р) 2 = 30 + (65 – 25) 1,45 2 = 147 O С.

Эта величина больше длительно допустимой температуры для кабелей с пластмассовой изоляцией, указанной не только в ПУЭ и равной 65 O С, но и больше указанной в ГОСТ Р 53769-2010 и равной 70 O С.
При возникновении короткого замыкания в процессе длительной перегрузки температура проводника превысит предельно допустимое значение 350 O С и составит для S = 1,5 мм 2 при I кз = 1550 А (1):

Q кон. = 147 · е к + 228 (е к – 1) = 394 O С, где к = 0,506.

На основании вышеизложенных расчетов и анализа напрашивается вывод о том, что для исключения возможного превышения допустимых температур электропроводки при перегрузках и КЗ номинальные токи защитной аппаратуры следует выбирать несколько ниже, чем требует ПУЭ, как, например, для автоматических выключателей: I ном.авт. 80% I доп.
Обратим особое внимание на то, что действующие требования ПУЭ не обязывают выполнять проверки проводников до 1 кВ на термическую стойкость к токам КЗ. Однако в отношении жилых, общественных, административных и бытовых помещений с этим трудно согласиться с учетом возможных тяжелых последствий.

Реальные значения токов короткого замыкания в схеме электроснабжения зданий

Токи КЗ в системе электроснабжения напряжением до 1 кВ рассчитываются согласно методике, изложенной в ГОСТ 28249­93 . Расчет оказывается более сложным, чем для сетей напряжением 6–35 кВ, что объясняется рядом обстоятельств:

  • необходимостью учета не только реактивных, но и активных сопротивлений элементов схемы;
  • необходимостью учета сопротивлений контактных соединений;
  • необходимостью учета увеличения активных сопротивлений проводника при росте температуры;
  • необходимостью учета сопротивления дуги;
  • отсутствием точных данных по сопротивлениям нулевой последовательности некоторых элементов системы электроснабжения (кабели с непроводящей оболочкой, силовые трансформаторы со схемой соединения обмоток Y/Yн, Y/Zн).

Однако это отдельная тема для разговора.
Как показывают , при установке на подстанциях трансформаторов мощностью 630 кВ·А и более, токи КЗ у потребителя могут превышать указанные в табл. 1 максимально допустимые значения. С целью ограничения токов КЗ в электросети жилого помещения можно применять питающие трансформаторы со схемами соединения обмоток Y/Yн. Такие трансформаторы обладают повышенными сопротивлениями нулевой последовательности, снижающими токи однофазного КЗ . В ряде случаев следует идти на увеличение сечения проводников внутренней электропроводки по сравнению с требуемым по условиям допустимой нагрузки и минимально допустимыми значениями, указанными в ПУЭ.

Из всего вышеизложенного следует, что даже при выполнении действующих нормативных требований, в результате КЗ на отдельных участках электропроводки жилых зданий могут создаться условия для возгорания. Однако в этом случае само КЗ было бы неправильно квалифицировать как причину пожара. Истинными причинами пожара являются либо неправильные технические решения, либо недостаточная надежность и быстродействие примененной защитной аппаратуры, либо превышение нормативного срока эксплуатации электрооборудования и т.п.

ВЫВОДЫ

1. В результате коротких замыканий, при значительных величинах тока КЗ и недостаточном быстродействии защитной аппаратуры, существует реальная опасность возгорания или серьезного ухудшения состояния изоляции внутренней электропроводки зданий.
2. Учитывая особую опасность возгорания, целесообразно ввести нормативное требование о выполнении проверки термической стойкости электропроводки в жилых зданиях.
3. Для исключения перегрузок внутренней электропроводки номинальные токи защитных аппаратов необходимо выбирать ниже длительно допустимых токов защищаемых проводников.
4. При выборе защитных аппаратов особое внимание следует уделять надежным автоматическим выключателям с гарантированным быстродействием в зоне мгновенного расцепления 0,02 с и менее.

Литература, используемая в статье

1. Правила Устройства Электроустановок, 6-­е и 7-­е изд.
2. Технический циркуляр №Ц­02­98(э) Департамента стратегии развития и научно­технической политики РАО «ЕЭС России».
3. ГОСТ Р 50345­99. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения.
4. ГОСТ 28249­93. Токи короткого замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
5. Федоровская А.И., Фишман В.С. Силовые трансформаторы 10(6)/0,4 кВ.

Для организации любого производства необходимы следующие основные составляющие: помещение, производственная линия и бригада квалифицированных рабочих. Еще, разумеется, необходимо закупить сырье и обеспечить каналы сбыта продукции. Но цех не заработает, если...


  • Кабель с многожильными проводами От того какую мы выбираем марку кабеля, для проведения электромонтажных работ, зависит безопасность энергосистемы и электрооборудования. Одной из причин пожаров, как не печально об этом говорить, является...


  • Приобретая новую квартиру, перед началом отделочных работ, возникает необходимость капитального ремонта электропроводки. Это связано с тем, что электромонтаж электропроводки в новостройках выполняется по типовым проектами, которые не учитывают всех требований, ...


  • Электромонтаж и прокладка кабеля в жилых и нежилых помещениях Прокладка кабеля — это одна и важнейших частей электромонтажных работ и от того как грамотно проведён электромонтаж кабеля, будет зависить дальнейшая работа...

  • Электроэнергия является неотъемлемой частью жизни каждого человека, которая делает существование проще и комфортнее. Однако при не соблюдении определенных правил эксплуатации электричества или работа с неисправными электроприборами может привести к порче имущества или возникнет угроза жизни и здоровью человека. К примеру, множество людей живет в домах, которые были построены несколько десятков лет назад, и электропроводка помещений осталась с тех времен. Разумеется, что состояние такой электропроводки оставляет желать лучшего, и если вовремя не заменить провода может случиться возгорание, в худшем случае переросшее в пожар.

    Основные причины

    Возгорание электропроводки может случиться в следующих ситуациях:

    1. Короткое замыкание. В этом случае температура на поврежденном участке возрастает в несколько раз, расплавляя при этом жилы электропроводки. Случается из-за пробоя изоляционного материала (механическое повреждение, микротрещины, повышенное напряжение, старая электропроводка).
    2. Перегрузка сети по току. Характерно при подключении электрооборудования повышенной мощности, появлении больших токов утечки, увеличении температуры на отдельных участках. Эти причины также ведут к перегреву и последующему возгоранию.
    3. Часто электропроводка горит в местах соединения токоведущих проводников. В результате ослабления или окисления контакта резко увеличивается переходное сопротивление электропроводки, которое влечет за собой перегрев и последующее возгорание.

    Самый распространенный случай возгорания электропроводки – неисправный или поврежденный шнур питания электроприборов. Если подобное случилось, то первым делом нужно отключить прибор от сети, накрыть место возгорания тряпкой и потушить огонь. В большинстве квартир стоят цветочные горшки, земля из которых отлично подойдет, чтобы сбить пламя.

    Порядок действий при выявлении первых признаков возгорания

    Если при подключении одного или нескольких приборов в сеть слышен запах горения пластмассы нужно немедленно предпринимать определенные меры, т.к. это явный признак возгорания электропроводки.

    Действовать нужно следующим образом:

    1. Все ремонтные работы проводятся в обесточенном помещении, поэтому вначале необходимо выкрутить пробки.
    2. В комнате, где был слышен запах горения проводки необходимо разобрать все розетки и проверить провода и контакты. Чаще всего ослабляется контакт под прижимной шайбой, что приводит к перегреву.
    3. Если все розетки в исправном состоянии, следует заглянуть в распределительную коробку. Заметить поврежденный участок не составит труда: контакт будет почерневший, расплавлена изоляция кабеля.
    4. В случае с неисправными розетками зачищаются провода, и восстанавливаются контакты. Если возгорание произошло в распределительной коробке, то поврежденный участок лучше вырезать и на его место сделать вставку другого кабеля, имеющего такое же сечение. Соединение запрещено выполнять методом скрутки, провода необходимо спаять, затем заизолировать оголенные участки.
    5. Если обнаружится, что сгорела проводка на значительном отрезке, то придется менять полностью весь кабель.

    Пожарная безопасность электропроводки с алюминиевыми жилами ниже, чем у медной проводки. Это объясняется тем, что алюминий имеет свойство окисляться на воздухе, из-за этого в месте соединения проводов повышается сопротивление, что приводит к перегреву и возгоранию. Поэтому лучше полностью .

    Не обязательно прокладывать новые провода сразу во всем доме, можно делать это постепенно, совмещая с косметическим ремонтом.

    Процесс этот довольно кропотливый и требует определенных знаний и умений. Если нет уверенности в собственных способностях, лучше прибегнуть к помощи профессионального электрика.

    Чем можно тушить проводку под напряжением

    Бывает, что когда загорелась электропроводка, рядом нет человека и оперативно сбить пламя невозможно. В этих случаях, чтобы предотвратить пожар, необходимо действовать быстро и не всегда есть возможность добежать до электрощита, чтобы обесточить дом. Возгорание на начальных стадиях можно тушить при помощи земли и песка. Но для таких экстренных случаев лучше иметь в доме специальный огнетушитель. Не все виды этого приспособления можно использовать для тушения приборов и электропроводки под напряжением. Поэтому, перед покупкой необходимо разобраться, каким огнетушителем можно тушить электропроводку.

    Лучшим вариантом является углекислотный огнетушитель, который можно применять для устранения возгораний в электроустановках под напряжением до 10000 В. Огнетушащее средство имеет низкую температуру и подается под высоким давлением. За счет этого удается не только устранить возгорание, но и охладить тлеющие участки электропроводки. Основным недостатком такого приспособления является то, что пары, которые выделяются при испарении, вредят здоровью человека. Поэтому углекислотным огнетушителем запрещено тушить пожар в непроветриваемых помещениях.

    Для квартир и частных домов, где напряжение в сети не превышает 380 В, хорошим вариантом будет приобретение порошкового огнетушителя, который можно использовать для тушения электроустановок под напряжением до 1000 В. Порошковое средство быстро устраняет возгорание за счет изоляции очага пламени от кислорода.

    Если есть возможность отключить электричество, можно использовать водные и пенные огнетушители. В противном случае такими средствами нельзя тушить электропроводку, т.к. человека может убить током. При ликвидации возгорания необходимо соблюдать дистанцию в 1 метр.

    Меры профилактики

    Если при монтаже электропроводки соблюдались правила устройства электроустановок, то правильное обращение с электроприборами сводит к минимуму риск возгорания проводов. Однако в этом вопросе нельзя быть уверенным на все 100 %, и для предотвращения возможных проблем лучше соблюдать рекомендации описанные ниже.

    Нельзя использовать много тройников и удлинителей, шнур от которых желательно прокладывать вдоль стен, чтобы на него не наступал человек, не ставились тяжелые предметы. Нужно знать, что максимальный ток для однофазной розетки составляет 16 А. Если превысить этот порог может не сработать токовая защита, и розетка станет опасной.

    Необходимо несколько раз в год делать ревизию распределительных коробок. Проверяются контакты на прочность соединения, зачищается слой окисления, если такой образовался.

    Нужно следить за состоянием розеток, периодически проверять надежность зажимных контактов. Изношенные изделия могут начать искрить, что впоследствии может стать причиной возгорания и перерасти в пожар.

    За включенными нагревательными электроприборами нужно постоянно следить. При необходимости покинуть дом на длительное время можно отключать подачу электричества на электрощите.

    Для предотвращения таких страшных последствий возгорания электропроводки, как пожар, необходимо установить специальные автоматические выключатели. Если есть возможность, то лучше провести отдельную линию для мощных электроприборов.

    Постоянное развитие индустрии бытовых приборов, значительно повышающих уровень современной жизни, является причиной значительно возросшего среднестатистического электропотребления. Большинство внутриквартирных электрических сетей были рассчитаны совсем не на такую нагрузку. Поэтому, приобретая мощную электрическую бытовую технику нужно задумываться, а выдержит ли наша проводка подобные нагрузки, может быть необходима замена старой электропроводки?

    Множество пожаров сегодня случаются именно по причине неисправной электропроводки. Согласно ст. 210 Гражданского кодекса РФ, каждый собственник несет бремя содержания принадлежащего ему имущества. Таким образом, следить за состоянием электропроводки в квартире – это обязанность хозяина квартиры.

    Причин неисправностей электропроводки несколько. Зачастую провода в щите воспламеняются из-за плохого контакта, что приводит к нагреванию изоляции и её плавлению вплоть до возгорания.

    Также причиной неисправности может послужить утечка электричества. Это происходит в случае плохой изоляции, в виду чего часть энергии может пойти не в то русло. Примером могут послужить случаи, когда провода проложены под штукатуркой. Если она сухая, тогда послужит замечательным изолятором. Но в случаях попадания влаги может привести к печальным последствиям.

    Но самым распространенным случаем возгорания является короткое замыкание. Наиболее распространенные причины короткого замыкания: перетирание изоляции в местах, где провода перегибаются; перекручивание или сгибание проводов; закорачивание металлическими предметами штепсельных гнезд. Короткое замыкание может произойти из-за повреждения скрытой проводки в результате, например, забивания гвоздей, пробивании в стене отверстий и т.д. Еще одна причина - перегрев и разрушение изоляции из-за пользования электроприборами, потребляющими большой ток, при плохом состоянии электропроводки. В результате короткого замыкания может возникнуть пожар.

    Поэтому следить за состоянием электрохозяйства в квартире нужно обязательно. Необходимо регулярно обращать внимание на электророзетки и проводку, особенно на те, которые расположены вне поля видимости: за мебелью, крупной электротехникой. Если там установлена электророзетка, то из-за теплового проявления электрического тока может произойти нагревание контактов, розетка воспламенится, и как следствие загорится мебель и начнется пожар.

    Поэтому следует заранее продумывать и обеспечивать безопасность проведения электропроводки в квартире, делать тщательную изоляцию и устранять дефекты, во избежание плачевных последствий. Нужно знать, что электромонтажные работы являются работами с повышенной опасностью. В таких вопросах нужно доверять только профессиональным электрикам.

    Главное управление МЧС России по Республике мордовия напоминает, что нужно следить за состоянием электропроводки в доме, своевременно заменять провода с поврежденной изоляцией, а также в зимний период с максимальной осторожностью использовать электрооборудование для обогрева.

    Это действительно небольшое предисловие. Пожалуйста, уделите его прочтению 1 минуту своего времени.

    Данная книга будет полезна всем читателям. Совершено не важно, какое у вас жилье, новое или старое. Уверяю вас, что к концу книги каждый найдет для себя то, что изо дня в день может угрожать вашей безопасности или безопасности ваших родных и близких.

    С развалом СССР, потихоньку начало разваливаться и разрушаться все, что относиться к грамотному и качественному коммунальному хозяйству. Редким счастьем сейчас является хорошая управляющая компания и тем, кто живет под их покровительством, сказочно повезло.

    В большинстве своем, данные предприятия представляют собой унылую картину, основным направлением работы которых, являются пустые обещания и бесконечный сбор денег за коммунальные услуги. Стареют дома, подъезды, квартиры, а вмести с ними все, что находиться внутри. Электропроводка, сантехника, штукатурка стен, побелка потолков, подвалы, крыши, чердаки, лифты. Идет время, меняются, жильцы, собственники квартир и домов, а все остальное остается неизменным. Если мы и заботимся о капитальном ремонте, то он чаще всего ограничивается нашей квартирой, а все что остается за ее пределами редко кого интересует. Да и вообще, электрика всегда считалась очень затратной частью капитального ремонта, поэтому, многие старательно обходят этот очень важный пункт стороной. Мы совершенно не представляем себе, какому риску каждый день подвергаем себя и наши семьи.

    Владельцем новых квартир и домов, так же есть над чем поразмыслить, так как современное строительство двигается вперед под лозунгом «чем дешевле, тем лучше», вместо, «качественно и надежно».

    1. Электричество в нашей жизни

    Все мы живем в то время, когда электричество стало для нас такой же необходимостью как солнце для растений. Оглянитесь вокруг себя, повсюду нас окружают различные электроприборы, где бы мы не находились, на работе, дома, на улице. Они везде и повсюду.

    • бытовые электроприборы — чайник, холодильник, стиральная машина, утюг, микроволновка, посудомоечная машина, обогреватель, вентилятор, кондиционер, варочная панель, духовка, мультиварка, пароварка, йогуртница, тостер, блендер, кухонный комбайн, мясорубка, фен, бритва, фени так далее…
    • мультимедиа — компьютер, ноутбук, планшет, телефон, телевизор, музыкальный центр, проигрыватель CD, DVD дисков и так далее…
    • Освещение — люстра, светильник, бра, настольная лампа, подсветка гарнитура и так далее…

    Сложно себе представить нашу жизнь без всех этих вещей, мы стали зависимы от электричества как от воздуха, воды и еды, так как очень привыкли к комфорту.

    1. Стоимость электроэнергии и бытовой техники

    С каждым годом стоимость 1 киловатта электроэнергии неуклонно растет и это не очень благоприятно отражается на семейном бюджете каждой российской семьи. Но это еще не все. Все вы слышали о скором вводе в регионах России ограничений по потреблению электроэнергии, которое коснется каждого дома и каждую семью, каждого человека. Давайте разберемся, что же это значит, и как это будет выглядеть?

    На каждого человека будет отведено определенное количество потребляемой мощности, сколько то киловатт. Если же мы эту мощность превышаем, то оплата всех последующих Киловатт будет производиться уже по другому, более дорогому тарифу. Разумеется это очень выгодно государству, но невыгодно населению. Мы не привыкли экономить, да и нескоро этому научимся, так как в каждом доме имеется очень солидный арсенал электробытовой и мультимедийной техники. Которая, к слову, только недавно стала боле менее доступной для большей части населения нашей страны. И теперь нас хотят ограничить.

    Жизнь ускоряет темп и без помощи бытовой техники и мультимедийной электроники быть в тренде практически невозможно. Поэтому будущие перспективы экономии прельщают не сильно, придется платить больше.

    За сколько лет в вашей квартире собралась команда необходимых вам электроприборов? Сколько денег ушло на их покупку? И какими дорогими в итоге они для вас являются. Об этом мы не задумываемся, пока что ни будь вдруг не случиться.

    Представьте на секунду, что в один прекрасный день все ваши электроприборы вдруг исчезнут или придут в негодность. Что тогда будет? Владеете ли вы такими финансовыми возможностями, что бы пойти и купить завтра все новое? Нет? А ведь такое может случиться и даже раньше, чем вы можете себе это представить. Почему? Давайте разберемся.

    Задумывали ли вы когда-нибудь, о том насколько ваша электропроводка соответствует потребляющим мощностям? Конечно же, нет. Тогда давайте перейдем к следующей главе, где все по порядку разберем.

    1. Насколько выросло потребление электроэнергии

    Большая часть жилых домов были построены во времена существования СССР и им уже далеко за 30 лет. Со времен их постройки очень глобально изменился весь мир, появилось огромное количество новой бытовой и медийной техники, различные вариации осветительных элементов. Нужно понимать, что каждое из этих устройств имеет свою электрическую мощность, которая необходима для его работы.

    Давайте посмотрим, что было, когда эти дома задумывались и проектировались, и что стало сейчас, когда они находиться на пике своей эксплуатации.

    В те далекие времена, когда проектировалась и строилась большая часть наших домов, потребление электроэнергии ограничивалось всего двумя, тремя электроприборами, которые имелись в арсенале каждой семьи. Как правило, это были – телевизор и холодильник, очень редко пылесос и еще реже стиральная машинка. Из освещения, два — три светильника и одна люстра. Вся бытовая техника была в единичном экземпляре, и обладала очень малым аппетитом потребления электроэнергии. Суммарная мощность всего этого оборудования составляла всего на всего 2-2,5 Киловатта или 2000-2500 Ватт. Если сравнивать с современным оборудованием, то примерно столько потребляет один электрочайник.

    Расчетный запас мощности, отведенный на одну квартиру, составлял 3 Киловатта или 3000 Ватт. А представьте, какая цифра получиться, если посчитать мощность всего оборудования, которое сегодня несет службу в наших домах. Возьмем, к примеру, стандартный набор бытового и медийного электрооборудования средней Российской семьи:

    • холодильник — 120 Вт (средняя мощность компрессора)
    • стиральная машина — в среднем около 2000 Вт
    • пылесос — 1500 Вт
    • микроволновая печь – 1800 Вт
    • чайник – 1500 Вт
    • утюг – 1500 Вт
    • пару телевизоров — 100 Вт (с ЖК экраном)
    • компьютер, системный блок – 750 Вт + монитор — 40 Вт (ЖК экран)
    • обогрегреватель – 1500 Вт
    • кондиционер – 1500 Вт
    • два мобильных телефона — 2 Вт

    Итого: 12 312 Вт или 12,3 кВт.

    А теперь сравним цифры.

    Насколько рассчитана электропроводка проектом строительства — 3 кВт и потребление сейчас — 12,3 кВт. По-моему все очевидно, 12,3 > 3, причем в четыре раза. Получается, что мы эксплуатируем свою электропроводку, в мягко говоря, очень сильно непредназначенном для нее режиме.

    1. Срок годности электропроводки

    Как бы странно это не звучало, но и у электропроводки тоже есть свой срок годности. Правильнее его будет назвать сроком эксплуатации. Каждый элемент проводки, начиная с провода и заканчивая розеткой, имеет свои ограничения по мощности и сроку эксплуатации. Разберемся в этом вопросе более детально.

    Провод. Состоит из изоляционного слоя и токопроводящей жилы. Как же он может износиться, он же в стене под штукатуркой? Существует такое понятие как усталость металла. С течением времени металл теряет свои первоначальные свойства, он становиться более рыхлым, ломким и уже не может в полном объеме выдерживать возлагаемые на него нагрузки. Поэтому, пожилую электропроводку нужно беречь и не нагружать работой. А что мы с ней делаем сейчас, вспомните про 13 кВт, в предыдущей главе. Это своего рода старенькая бабушка, которая уже физически не может выполнять те действия, которые с легкостью могла выполнять в дни соей бурной молодости. Для аналогии с проводкой, мы каждый день заставляем эту старую бабушку поднимать на 5 этаж по 20 мешков картошки, весом по 50 кг каждый. Как думаете, на сколько ее хватит?

    Изоляция провода, так же имеет свой срок эксплуатации. Как правило, в проводах, применяемых для внутренней электропроводки, она изготавливается из поливинилхлоридной композиции, которая не терпит высоких температур и разрушается под воздействием ультрафиолета. В нашем случае изоляция стареет в основном из-за высоких температур, еще раз вспомним про нагрузку 13 кВт.

    Каков же все-таки срок эксплуатации провода?

    На медный провод, с одним слоем изоляции, а именно такие провода в основном применялись в строительстве до 1996 года, гарантия завода изготовителя в среднем составляет 20-25 лет, на алюминиевый 10-15 лет. При правильной эксплуатации медный провод может прослужить 30-35 лет, у алюминиевого 20 лет предел. С течением времени электропроводка помимо естественного старения, подвергается различным перегрузкам, это может быть превышение мощности или короткое замыкание. При возникновении короткого замыкания, ток возрастает в сотни раз, провод очень сильно нагревается, превышая допустимый нагрев, и так, раз за разом, происходит постепенное разрушение изоляции. Насколько изоляция пострадает за один сеанс короткого замыкания, напрямую зависит от защитных устройств, которые предназначены в первую очередь для сохранения работоспособности проводки в экстренных ситуациях. Эти устройства располагаются в этажных щитках, рядом со счетчиками электроэнергии. К защитным устройствам 70-80 годов относятся предохранители с плавкими вставками, так называемые «пробки». Они выполняют функцию защиты провода от высоких температур, возникающих при коротком замыкании. Скорость срабатывания зависит от толщины калиброванной медной проволки, которая находиться внутри пробки. Чем тоньше проволка, тем быстрее срабатывание и тем меньше разрушается проводка. Именно поэтому, каждый предохранитель снабжен маркировкой обозначающей толщину этой проволки, которая измеряется током срабатывания. Например, пробка с номиналом срабатывания 6А, сработает, перегорит, разорвав цепь подачи тока в вашу квартиру, при протекании по ней тока в 6 Ампер – это примерно 1кВт.

    А что мы делаем, когда без конца выбивают пробки, ставим пробки номиналом побольше. Вместо 6А, во многих домах стоят пробки на 25А. Чтобы сработала такая вставка, ей нужно уже не 1кВт, а целых 5. А ведь проводка рассчитывалась всего на 3 кВт.

    Как же происходит такая абсурдная замена пробок с 6А на 25 А? Очень просто. Это происходит примерно так. Пропадает свет. Мы вызываем электрика из ЖЭУ. Он диагностировав причину отсутствия света, вам рассказывает о существовании в электрощитке «пробок». Но так как коммунальные службы зачастую бедствуют, и не выделяет электрикам эти пробки, они их ремонтируют. Чего делать категорически нельзя! Этот ремонт выглядит примерно так, поверх рабочих элементов пробки устанавливаются так называемые «жучки», это кусок любой подручной проволки, которым они заменяют специально откалиброванную медную нить, изготовленную заводом изготовителем и рассчитанную на определенный ток срабатывания. На какой ток будет срабатывать пробка теперь не известно.

    Видя всю эту картину, жильцы делают самостоятельные запасы пробок на следующий раз, вдруг еще раз перегорят. Но придя в магазин, нас ставит в тупик вопрос продавца электротоваров, «на какой ток срабатывания вам нужна пробка, на сколько Ампер?». Электрик из ЖЭУ вам не сказал, а сами вы не знаете. Помявшись, вы берете то, что рекомендует вам продавец, пробки на 16 или 25 Ампер. Продавцу все равно, что вам продавать, зачастую они продают то, что дороже, а не то, что вам нужно. К тому же конкретно вашей ситуации он не знает, ведь что бы рекомендовать такие вещи нужно знать сечение провода, материал из которого он изготовлен, возраст и состояние электропроводки. Вот такая история, рано или поздно, повторяется практически во всех квартирах нашей страны и могла бы произойти и свами, если бы вы не прочитали об этом в этой книге.

    К слову, вся электропроводка, проектированная и монтированная в период с 70 до середины 90 годов, выполнялась в большинстве своем, из алюминиевого провода.

    Не многие знают, но износу подвержено все, даже розетки и выключатели. Например, выключатель рассчитан заводом изготовителем на определенное количество включений и выключений. Когда кончается лимит, механизм изношен и подлежит замене. Изнашивается в первую очередь подвижная контактная группа, прижим которой обеспечивает маленькая пружинка внутри механизма. Со временем она ослабевает и подвижный контакт уже нет так плотно взаимодействует с неподвижными, образовавшийся зазор вызывает искрение при каждом включении и ли выключении или просто не всегда срабатывает. К чему это может привести? К быстрому перегоранию лампочек, к преждевременному выходу из строя понижающего трансформатора, которые так часто сейчас применяться в современны х люстрах, к пожару.

    По розеткам ситуация аналогичная, прижим контактных клемм к вилке становиться не плотным и вилка начинает болтаться в розетке. К чему это может привести? В лучшем случае к порче электрооборудования, которое воткнуто в розетку, из-за плохого контакта будут происходить микро сбои в работе и оно преждевременно выйдет из строя. В худшем случае пожар. И это мы еще не поговорили о распределительных коробках. В следствии износа провода, с течением времени, контакт ослабевает и начинает греться. К чему это может привести? Думаю понятно без лишних комментариев.

    1. Старая проводка на пределе

    Стоит ли еще подробнее рассказывать о том, чем грозит такая жесткая эксплуатация электропроводки и ее несвоевременная замена. Я думаю, нет. Мы убиваем старую электропроводку, даже не подозревая об этом.

    Зимний период времени по статистике МЧС самый пожароопасный и основной причиной возгорания является электропроводка.

    Мы не уделяем должного внимания данному вопросу из-за полной неграмотности в данной тематике. В школе нам про это никто не говорил и не рассказывал, да тогда в этом еще не было необходимости. А сейчас, когда эта необходимость настала, рассказать некому. По телевизору одни сериалы про ментов, воров и убийц, а реальные электрики без денег палец об палец не ударят, что уж говорить о разъяснительных работах с населением. Вот и получается, что все мы учимся только тогда, когда что-то с нами случается. Мы же, как думаем, со мной этого никогда не случиться, это Коляну и Люське не повезло, а нам повезет.

    Помните о том, что в нашей стране не знание, не освобождает от ответственности. А ответственность эта может наступить очень неожиданно. О чем я? Объясню.

    Простой пример, допустим (не дай бог конечно) в вашем доме или квартире произошел пожар. Вам повезло и вы остались живы, а все ваше имущество деньги и документы, мебель, бытовая техника – все, что годами наживалось, сгорело дотла. Вы думаете что ваши неприятности на этом кончились? Нет. Доблестные пожарные, разумеется потушат вашу квартиру, но производя сою работу они выливают столько воды, что этого хватает на то, чтоб затопить все квартиры с 5 по 1 этаж.

    Итак, в итоге пострадали вы, ваши соседи, что дальше. У кого из вас квартира застрахована от подобных случаев? У 5% из 100 или у тех, кто имеет подобный плачевный опыт или ипотечный кредит.

    90%, что пожарные посчитают причиной возникновения пожара неисправную электропроводку. Раз пожар был в вашей квартире из-за вашей проводки, то виноватым в пожаре соседи посчитают вас. Имущество их квартир безвозвратно испорчено — новый ремонт, дорогущая мебель, бытовая техника все залито водой. Логично, что они захотят с кого ни будь потребовать возместить причинённый им материальный ущерб. Спрашивать будут явно не с пожарных. Так что делайте выводы.

    Похоже на кошмарный сон, не правда ли? А ведь всего этого можно было избежать.

    1. Все может измениться в один день — перенапряжение

    Но это еще не все страхи и кошмары, подстерегающие вашу квартиру и имущество. Помните название книги, ТЫ БУДЕШЬ В ШОКЕ! Эта ситуация может произойти в любом доме и здесь уже неважно какая у вас проводка старая или новая.

    Мало кто задумывается о том, как происходит электроснабжение наших квартир и домов и о том, как электричество распределяется по дому, по этажам, квартирам и как попадает в наши любимые электроприборы. Пока все стабильно работает и функционирует, узнавать об этом нет никакой необходимости. Но нужно понимать, что все электроприборы, проживающие в наших домах, имеют заданные заводом изготовителем определенные требования необходимые для их стабильной и долгой работы. Все эти требования прописаны в паспорте оборудования и инструкции по эксплуатации. Но признаемся себе честно, кто и когда читал эти документы. В лучшем случае, при покупке какой либо техники, мы бегло пролистываем несколько страниц и как только узнаем основные обозначения кнопок и краткое описание функций навсегда убираем эти документы в дальний ящик.

    Все меняется лишь тогда, когда вдруг наш любимый и нужный прибор по какой либо причине отказывается выполнять свои функции. Возникает моментальный дискомфорт, нарушается привычный ритм жизни и только тогда мы начинаем разбираться в вопросах поломки и неисправности электроприбора. Этот вопрос без серьезных финансовых затрат возможно решить в сервисном центре по обслуживанию и ремонту бытовых электроприборов. Напомню, что этот дискомфорт возник из-за неисправности всего лишь одного электроприбора.

    Но может случиться и по другому.

    Задумывались ли вы когда-нибудь, что возможно потерять ВСЮ нажитую честным трудом электробытовую технику и приборы всего за несколько минут. И что это так же реально, как и проснувшись рано утром обнаружить в своем туалете пригоревшую лампочку. Я думаю, что не задумывались.

    Данное событие называется перенапряжением. Что же это такое, и что во время него происходит? На участке электросети, от питающей электрораспределительной понижающей подстанции до вашего счетчика отгорает всего один провод – нулевой. В секунду начинается процесс бесконтрольного хаотичного гуляния тока по проводам и квартирам. От кого то он уйдет совсем и напряжение упадет до 60-80 Вольт. А к кому то придёт, причем весь, даже тот, который от кого то ушел. И у тех, к кому он придет, очень не повезет, так как вместо положенный 220 Вольт во всех розетках окажется 380 Вольт. И вот тогда прощайте лампочки и бытовая техника. Все, что подключено к электросети задымиться и выйдет из строя. И вот тогда, ремонт техники, которая еще будет подлежать ремонту обойдется ой, как дорого. А все остальное придётся выкинуть и купить новое.

    1. Можно ли избежать возникновение пожара из-за старой электропроводки

    Защитить старую электропроводку от пожара практически не представляется возможным. Рано или поздно, что то обязательно случиться. Но вот уменьшить вероятность плохого развития сценария попробовать можно. Для этого необходимо:

    • узнать сечение провода и материал, которым выполнена электропроводка (как правило, это 2,5 квадрата алюминия, до 93 года включительно, а дальше пошло постепенное введение самого дешёвого медного провода)
    • посмотреть, на какую нагрузку рассчитан провод заводом изготовителем (2,5 квадрата меди на 21-25 Ампер – 5 Киловатт, 2,5 квадрата алюминия 18 Ампер – 3 Киловатта)
    • занизить устройство защиты провода для меди в 1,5-2 раза (например, при сечении жилы провода 2,5 квадрата рассчитанная защита равна 25 Амперам, ставим на 16). Для алюминия в 2,5-3 раза (при сечении провода 2,5 квадрата расчетная защита равна 16 Амперам — ставим на 6 Ампер)
    • заменить все неисправные или частично неисправные элементы проводки – розетки, выключатели, люстры, светильники, электросчетчик

    Это самый простой и доступный способ, но он не решает проблему, а всего лишь уменьшает вероятность ее возникновения.

    1. Как защититься от перенапряжения

    Защититься от перенапряжения вероятно всего лишь двумя способами.

    • Сделать заземление, причем то которое сделано правильно и будет работать, как положено
    • Помимо основных средств защиты, установить дополнительное устройство ограничивающее напряжение
    • Теме защиты бытовой техники и электроники от перенапряжения и скачков напряжения в электрической сети будет посвящен отдельный материал. Данный вопрос требует детального подхода для грамотного описания его решения.

    Единственно правильный вариант решения вашей проблемы

    Мы разобрали основной вариант защиты старой электропроводки, который уменьшает вероятность происшествия чрезвычайной ситуации, но не решает этот вопрос в корне. Давайте разберемся, каково же основное решение данной проблемы.

    Решение одно – замена электропроводки и грамотно подобранная защита.

    Сейчас в головах многих промелькнула мысль разочарования, так как данный метод являться очень пыльным, финансово затратным и возможен только при проведении капитального ремонта квартиры или дома. Да, действительно, лучше производить замену проводки одним заходом, везде и сразу.

    Но есть вариант и частичной, поэтапной замены. Ведь все мы рано или поздно делаем косметический ремонт свое жилья, меняем обои, красим потолки, меняем окна. При очередном проведении данного мероприятия к списку дел добавляем замену электропроводки. Причем легко и просто. Делаем ремонт в детской, поменяли электрику, делаем через год в зале или на кухне, то же меняем. Таким образом, постепенно будет обновлена электрика во всей квартире. Каким образом это сделать, вы узнаете из материалов тренинг центра «Электрика в квартире и доме Своими Руками». Если вы читаете эту книгу значит, вам небезразлична безопасность вашего дома, наши уроки и руководства помогут вам жить, не подвергая опасности ваш дом и семью из-за проблем с электрикой.

    Не откладывайте решение в долгий ящик, помните, от этого зависит ваша безопасность и безопасность ваших близких.

    Причины загораний в электротехнических устройствах

    Электротехнические устройства можно объединить в группы по наиболее существенным признакам: конструктивному исполнению, электрическим характеристикам, функциональному назначению. Шесть основных групп электроустановок охватывают практически все многообразие применяемых на практике электротехнических устройств.
    Это провода и кабели, электродвигатели, генераторы и трансформаторы, осветительная аппаратура, распределительные устройства, электрические аппараты пуска, переключения, управления, защиты, электронагревательные приборы, аппараты, установки, электронная аппаратура, ЭВМ.
    Причины загораний проводов и кабелей
    1. Перегрев от короткого замыкания между жилами провода и жилами кабеля, их жилами и землей в результате:
    - пробоя изоляции повышенным напряжением, в том числе от грозовых перенапряжений;
    -пробоя изоляции в месте образования микротрещин как заводского дефекта;
    - пробоя изоляции в месте механического повреждения при эксплуатации;
    - пробоя изоляции от старения;пробоя изоляции в месте локального внешнего или внутреннего перегрева;пробоя изоляции в месте локального повышения влажности или агрессивности среды;
    - случайного соединения токопроводящих жил кабелей и проводов между собой или соединения токопроводящих жил на землю;
    - умышленного соединения токопроводящих жил кабеля и проводников между собой или соединения их на землю.
    2. Перегрев от токовой перегрузки в результате:
    - подключения потребителя завышенной мощности;
    - появления значительных токов утечки между токоведущими проводами, токоведущими проводами и землей (корпусом), в том числе на распределительных устройствах за счет снижения величины электроизоляции;
    - увеличения окружающей температуры на участке или в одном месте, ухудшения теплоотвода, вентиляции.
    3. Перегрев мест переходных соединений в результате:
    - ослабления контактного давления в месте существующего соединения двух или более токопроводящих жил, приводящего к значительному увеличению переходного сопротивления;
    - окисления в месте существующего соединения двух и более проводников, приводящего к значительному увеличению переходного сопротивления.
    Анализ этих причин показывает, что, например, короткое замыкание в электропроводниках не является первопричиной загораний, тем более пожаров. Оно является следствием не менее восьми первичных физических явлений, приводящих к мгновенному снижению сопротивления изоляции между токопроводящими жилами разных потенциалов. Именно эти явления следует считать первичными причинами пожара, исследование которых представляет научный и практический интерес.
    Ниже приводится классификация причин загораний в других электротехнических устройствах.
    Причины загораний электродвигателей, генераторов и трансформаторов
    1. Перегрев от коротких замыканий в обмотках в результате межвиткового пробоя электроизоляции:
    - в одной обмотке повышенным напряжением;

    - от старения;

    - от воздействия локального внешнего или внутреннего перегрева;
    - от механического повреждения;
    2. Перегрев от коротких замыканий на корпус в результате пробоя электроизоляции обмоток:
    - повышенным напряжением;
    - от старения электроизоляции;
    - пробоя электроизоляции обмоток на корпус от механического повреждения электроизоляции;
    - от воздействия влаги или агрессивной среды;
    - от внешнего или внутреннего перегрева.
    3. Перегрев от токовой перегрузки обмоток возможен в результате:
    - завышения механической нагрузки на валу;
    - работы трехфазного двигателя на двух фазах;
    - торможения ротора в подшипниках от механического износа и отсутствия смазки;
    - повышенного напряжения питания;
    - длительной непрерывной работы под максимальной нагрузкой;
    - нарушения вентиляции (охлаждения);
    - завышенной частоты включения под нагрузку и выключения;
    - завышенной частоты реверсирования электродвигателей;
    - нарушения режима пуска (отсутствие пусковых гасящих сопротивлений).
    4. Перегрев от искрения в контактных кольцах и коллекторе в результате:
    - износа контактных колец, коллектора и щеток, приводящего к ослаблению контактного давления;
    - загрязнения, окисления контактных колец, коллектора;
    - механического повреждения контактных колец, коллектора и щеток;
    - нарушения мест установки токосъемных элементов на коллекторе;
    - перегрузки на валу (для электродвигателей);
    - токовой перегрузки в цепи генератора;
    - замыкания пластин коллектора из-за образования токопроводящих мостиков на угольной и медной пыли.
    Причины загораний в распределительных устройствах,электрических аппаратах пуска, переключения, управления, защиты
    1. Перегрев обмотки электромагнита от межвиткового замыкания в результате пробоя изоляции:
    - повышенным напряжением;
    - в месте образования микротрещин как заводского дефекта;
    - в месте механического повреждения при эксплуатации;
    - от старения;
    - в месте локального внешнего перегрева от искрящих контактов;
    - при воздействии повышенной влажности или агрессивности среды.
    2. Перегрев от токовой перегрузки в обмотке электромагнита в результате:
    - повышенного напряжения питания обмотки электромагнита;
    - длительного разомкнутого состояния магнитной системы при включении под напряжением обмотки;
    - периодического недотягивания подвижной части сердечника до замыкания магнитной системы при механических повреждениях конструктивных элементов устройств;
    - повышенной частоты (количества) включений – выключений.
    3. Перегрев конструктивных элементов в результате:
    - ослабления контактного давления в местах подключения токопроводящих проводников, приводящего к значительному увеличению переходного сопротивления;
    - окисления в местах подсоединения токопроводящих проводников и элементов, приводящего к значительному увеличению переходного сопротивления;
    - искрения рабочих контактов при износе контактных поверхностей, приводящего к увеличению контактного переходного сопротивления;
    - искрения рабочих контактов при окислении контактных поверхностей и увеличения переходного контактного сопротивления;
    - искрения рабочих контактов при перекосах контактных поверхностей, приводящих к увеличению контактного сопротивления в местах контактирования;
    - сильного искрения нормальных рабочих контактов при удалении искрогасительных или дугогасительных устройств;
    - искрения при электрическом пробое проводов на корпус, снижении электроизоляционных качеств конструктивных элементов от локального воздействия влаги, загрязнений, старения.
    4. Загорания от предохранителей в результате:
    - нагрева в местах рабочих контактов от снижения контактного давления и возрастания переходного сопротивления;
    - нагрева в местах рабочих контактов от окисления контактных поверхностей и возрастания переходного сопротивления; разлетания частиц расплавленного металла плавкой вставки при разрушении корпуса предохранителя, вызванного применением нестандартных плавких вставок («жучков»);
    - разлетания частиц расплавленного металла нестандартных открытых плавких вставок.
    Причины загораний в электронагревательных приборах,аппаратах, установках
    1. Перегрев приборов, аппаратов, установок от замыкания электронагревательных элементов в результате:
    - разрушения электроизоляции конструктивных элементов от старения;
    - разрушения электроизоляционных элементов от внешнего механического воздействия;
    - наслаивания токопроводящего загрязнения между токоведущими конструктивными элементами;
    - случайного попадания токопроводящих предметов и замыкания токоведущих электронагревательных элементов;
    - ослабления контактного давления в местах подключения токопроводящих проводников, элементов, приводящего к значительному увеличению переходного сопротивления;
    - окисления в местах подсоединения токопроводящих проводников элементов, приводящего к значительному увеличению переходного сопротивления;п
    - робоя электроизоляции конструктивных элементов повышенным напряжением питания;
    - выкипания нагреваемой воды (жидкости), приводящего к деформации конструктивных элементов, электрическому замыканию и разрушению конструкции нагревателя в целом.
    2. Загорания от электронагревательных приборов, аппаратов, установок в результате:
    - соприкосновения горючих материалов (предметов) с нагревательными поверхностями электронагревательных приборов, аппаратов, установок;
    - теплового облучения горючих материалов (предметов) от электронагревательных приборов, аппаратов, установок.
    Причины загораний комплектующих элементов
    Перегрев от коротких замыканий в результате:
    - электрического пробоя диэлектрика в конструкции комплектующего элемента, приводящего к перегрузке по току;
    - снижения электроизоляционных свойств конструкционных материалов от старения;
    - ухудшения теплоотвода при неправильной установке и (или) эксплуатации;
    - повышенного рассеяния мощности из-за изменения электрического режима при отказе «прилегающих» комплектующих элементов;
    - образования электрических цепей, не предусмотренных конструкцией.
    Черкасов В.Н., Костарев Н.П.
    Пожарная безопасность электроустановок

    Просмотров